【题目】如图,在中,以为直径的交于点,.
(1)判断与的位置关系,并说明理由;
(2)求证:;
(3)在上取一点,若,,求的值.
【答案】(1)相切,详见解析;(2)详见解析;(3).
【解析】
(1)要证明AC与⊙O相切.证得∠BAC=90°即可;
(2)证明△BCA~△ACD,即可得到CA2=CDCB;
(3)设⊙O的半径为,EC=,AC=r,EB=EC=,AE=,在Rt△AEC中,EC2=AE2+AC2,列出方程2=()2+2,求出的值,即可求tan∠ACE的值.
(1)相切.理由是:
∵AB是直径,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∵∠DAC=∠B,
∴∠DAC+∠BAD=90°,
∴∠BAC=90°,
∴BA⊥AC,
∴AC是⊙O的切线;
(2)在Rt△BCA和Rt△ACD中,
∠BAC=∠ADC=90°,∠BCA=∠ACD ,
∴△BCA△ACD,
∴,
∴;
(3)设⊙O的半径为r,EC=x,
∵AB=2AC,
∴AC=r,
∵∠BCE=∠B,
∴EB=EC=x,
∴AE=2r﹣x,
在Rt△AEC中,
∵EC2=AE2+AC2,即,
解得:,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 xOy 中,将点 A(2,4)向下平移 2 个单位得到点 C,反比例函数y (m≠0)的图象经过点 C,过点 C 作 CB⊥x 轴于点 B
(1)求 m 的值;
(2)一次函数 y=kx+b(k<0)的图象经过点 C,交 x 轴于点 D, 线段 CD,BD,BC 围成的区域(不含边界)为 G; 若横、纵坐标都是整数的点叫做整点
①b=3 时,直接写出区域 G 内的整点个数
②若区域 G 内没有整点,结合函数图象,确定 k 的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )
A.B.C.8D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y = ax2+ bx + c经过A、B、C三点,已知点A(-3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;
(3)在直线x = -2上是否存在点M,使得∠MAC = 2∠MCA,若存在,求出M点坐标.若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF、EF,在点E的运动过程中线段AF的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形ABC中,AB=6cm,BC=4cm,AC=3cm将三角形ABC沿着与AB垂直的方向向上平移3cm,得到三角形FDE.则图中阴影部分的面积为( )
A.12cm2B.18cm2C.24cm2D.26cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,当时,.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;
(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题9分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;
(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;
(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com