精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的边长为4,分别以正方形的三边为直径在正方形内部作半圆,则阴影部分的面积之和是(  )

A.8B.4C.16πD.

【答案】A

【解析】

先判断出两半圆交点为正方形的中心,连接OAOD,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积.

解:由题意,易知两半圆的交点即为正方形的中心,设此点为O,连接AODO

则图中的四个小弓形的面积相等,

∵两个小弓形面积=S半圆AOD-SAOD=S半圆AOD-S正方形ABCD

又正方形ABCD的边长为4,得各半圆的半径为2

∴两个小弓形面积=×π×22×4×4=2π4

S阴影2×S半圆4个小弓形面积=π2224)=8

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,点A的坐标为(08),点 Bbt)在直线x=b上运动,点DEF分别为OB0AAB的中点,其中b是大于零的常数.

1)判断四边形DEFB的形状.并证明你的结论;

2)试求四边形DEFB的面积Sb的关系式;

3)设直线x=bx轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点C为直径BA的延长线上一点,CD切⊙O于点D

(Ⅰ)如图①,若∠CDA=26°,求∠DAB的度数;

(Ⅱ)如图②,过点B作⊙O的切线交CD的延长线于点E,若⊙O的半径为3BC=10,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形纸片ABCD中,已知AD=8AB=6E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点Am3)、B6n)在双曲线yx0)上,直线yax+b经过AB两点,并与x轴、y轴分别相交手CD两点,已知SOAB8

1)求双曲线y的函数表达式;

2)求△COD的周长;

3)直接写出不等式-axb的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】目前世界上最高的电视塔是广州新电视塔.如图所示,新电视塔高AB610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°

1)求大楼与电视塔之间的距离AC

2)求大楼的高度CD(精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,以为直径的于点

1)判断的位置关系,并说明理由;

2)求证:

3)在上取一点,若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线yax2+bx+c经过A(﹣10)、B50)、C0,﹣5)三点.

1)求抛物线的解析式和顶点坐标;

2)当0x5时,y的取值范围为   

3)点P为抛物线上一点,若SPAB21,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点AB之间的距离为10cm,双翼的边缘ACBD54cm,且与闸机侧立面夹角∠PCA=∠BDQ30°.当双翼收起时,可以通过闸机的物体的最大宽度为(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

同步练习册答案