精英家教网 > 初中数学 > 题目详情

【题目】如图,等边△A1C1C2的周长为1,作C1D1A1C2D1,在C1C2的延长线上取点C3,使D1C3D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2A2C3D2,在C2C3的延长线上取点C4,使D2C4D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1A2A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△AnnCn+1的周长和为_____.(n2,且n为整数)

【答案】

【解析】

根据等边三角形的性质分别求出△A1C1C2,△A2C2C3,△A3C3C4,△AnCnCn+1的周长即可解决问题.

解:∵等边△A1C1C2的周长为1,作C1D1A1C2D1

A1D1D1C2

∴△A2C2C3的周长=A1C1C2的周长=

∴△A1C1C2,△A2C2C3,△A3C3C4,△AnnCn+1的周长分别为1

∴△A1C1C2,△A2C2C3,△A3C3C4,△AnnCn+1的周长和为1+++…+

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点CE分别在直线ABDF上,小华想知道∠ACE和∠DEC是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EOBO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BCEF.小华的想法对吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形网格中,点ABC在小正方形的顶点上.

1)在图中画出与△ABC关于直线l成轴对称的△ABC′;

2)在直线l上找一点P,使PB′+PC的长最短;

3)若△ACM是以AC为腰的等腰三角形,点M在小正方形的顶点上.这样的点M共有   个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知点A(1,a是反比例函数的图象上一点直线与反比例函数的图象的交点为点BDB(3,﹣1),

(1)求反比例函数的解析式

(2)求点D坐标并直接写出y1y2x的取值范围

(3)动点Px,0)x轴的正半轴上运动当线段PA与线段PB之差达到最大时求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为、宽为的全等小矩形,且> .(以上长度单位:cm)

(1)观察图形,可以发现代数式可以因式分解为

(2)若每块小矩形的面积为10,四个正方形的面积和为58,试求图中所有裁剪线(虚线部分)长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,

(1)求k的值;

(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;

(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F.

(1)求证:AB=CF;

(2)连接DE,若AD=2AB,求证:DEAF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,放置的是一副斜边相等的直角三角板,其中ABBC,连接BD交公共的斜边ACO点.

(1)证明:BD平分∠ADC

(2)求∠COD的度数.

查看答案和解析>>

同步练习册答案