精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中(如图),已知抛物线yax2+bx+ca≠0)的图象经过点B 40)、D 53),设它与x轴的另一个交点为A(点A在点B的左侧),且△ABD的面积是3

1)求该抛物线的表达式;

2)求∠ADB的正切值;

3)若抛物线与y轴交于点C,直线CDx轴于点E,点P在射线AD上,当△APE与△ABD相似时,求点P的坐标.

【答案】(1)yx26x+8;(2);(3)P119)或(42).

【解析】

1)先根据的面积求出点A的坐标,再利用待定系数法求解即可;

2)先根据的坐标求出的值,再过点BE,可求出的值,从而可得的正切值;

3)根据的坐标分别求出直线的解析式,再分两种情况讨论,分别根据相似三角形的性质得出对应角相等,然后利用平行线的性质和解直角三角形求解即可.

1)设

AB边上的高为3

则由的面积是3可得:

解得

设抛物线解析式为

代入得:,解得

故该抛物线的表达式为

2)如图1,过点D轴于点F

过点BE

在等腰中,

的正切值为

3)如图2,设直线AD解析式为

代入得,解得

则直线AD解析式为

同理,由可得直线BD解析式为

可得直线CD解析式为

时,,解得

①若,则

则可设PE所在直线解析式为

将点代入得,解得

则直线PE解析式为

,解得

故此时点

②若,则

过点P于点G

由直线AD的解析式可设P的坐标为

,解得

综上,点P的坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,抛物线的顶点为C14),交x轴于AB两点,交y轴于点D,其中点B的坐标为(30).

1)求抛物线的解析式;

2)如图2,点EBD上方抛物线上的一点,连接AEDB于点F,若AF=2EF,求出点E的坐标.

3)如图3,点M的坐标为(0),点P是对称轴左侧抛物线上的一点,连接MP,将MP沿MD折叠,若点P恰好落在抛物线的对称轴CE上,请求出点P的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小

组为了了解“共享单车”的使用情况,对本校教师在36日至310日使用单车的情况进行了问卷调查,

以下是根据调查结果绘制的统计图的一部分:

请根据以上信息解答下列问题:

137日使用“共享单车”的教师人数为人,并请补全条形统计图;

2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢的教师有36人,求喜欢的教师的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC 中,∠ACB90°,∠ABC30°AC2,将ABC绕点C顺时针旋转,点AB的对应点分别为A1B1,当点A1恰好落在AB上时,弧BB1与点A1构成的阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,以BC为直径的⊙OAC于点D,过点D作⊙O的切线交AB于点M,交CB延长线于点N,连接OMOC1

1)求证:AMMD

2)填空:

①若DN,则△ABC的面积为   

②当四边形COMD为平行四边形时,∠C的度数为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:

1)本次被抽取的学生共有_______名;

2)请补全条形图;

3)扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为_______°;

4)若该校共有名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DBAC,且DB=ACEAC的中点,

1)求证:BC=DE

2)连接ADBE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形中,是射线上的点,连接,将沿直线翻折得

1)如图①,点恰好在上,求证:

2)如图②,点在矩形内,连接,若,求的面积;

3)若以点为顶点的三角形是直角三角形,则的长为  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,弦

1)求证:是等边三角形.

2)若点的中点,连接,过点,垂足为,若,求线段的长;

3)若的半径为4,点是弦的中点,点是直线上的任意一点,将点绕点逆时针旋转60°得点,求线段的最小值.

查看答案和解析>>

同步练习册答案