精英家教网 > 初中数学 > 题目详情

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;并写出B点坐标;

(2)请作出△ABC关于y轴对称的△A'B'C';

(3)请作出将△ABC向下平移的3个单位,再向右平移5个单位后的△A1B1C1;则点A1的坐标为_____;点B1的坐标为______

【答案】(1)坐标系见解析;B(-2,1)(2)画图见解析;(3)画图见解析;(1,2),(4,0);

【解析】

(1)根据坐标性质即可画出平面直角坐标系,根据图形可知B点坐标

(2)根据y轴对称即可画出

(3)根据平移的性质即可画图,直接写出坐标.

解:(1)平面直角坐标系如图所示:

依据图形,可知B点坐标为(-2,1)

2)△A'B'C'如图所示;

3)△A1B1C1如图所示.则点A1的坐标为(12);点B1的坐标为(40),

故答案为(12),(40);

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】本题满分9分如图ABC的一边AB为直径的半圆与其它两边ACBC的交点分别为DE

1试判断ABC的形状并说明理由;

2已知半圆的半径为5BC=12的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,∠ACB=90°AC=BC,∠CAD=CBD

1)求证:CD平分∠ACB;

2)点EAD延长线上一点,CE=CACFBDAE于点F,若∠CAD=15°

求证:EF=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.

(1)求抛物线解析式;

(2)在直线BC上方的抛物线上求一点P,使PBC面积为1;

(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=BAC?若存在,求出Q点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=﹣x+3x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.

(1)直接写出抛物线的解析式和点A,C,D的坐标;

(2)动点PBD上以每秒2个单位长的速度由点B向点D运动,同时动点QCA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.

①当∠DPE=CAD时,求t的值;

②过点EEMBD,垂足为点M,过点PPNBD交线段ABAD于点N,当PN=EM时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线l:y=x+mx轴于点A,二次函数y=ax2﹣3ax+c(a≠0,且a、c是常数)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,与直线l交于点D,已知CDx轴平行,且SACD:SABD=3:5.

(1)求点A的坐标;

(2)求此二次函数的解析式;

(3)点P为直线l上一动点,将线段AC绕点P顺时针旋转α°(0°<α°<360°)得到线段A'C'(点A,A'是对应点,点C,C'是对应点).请问:是否存在这样的点P,使得旋转后点A'和点C'分别落在直线l和抛物线y=ax2﹣3ax+c的图象上?若存在,请直接写出点A'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.

1)如图1,若直线相交于,过点,连接并延长,使得,过点,证明:.

2)如图2,若直线的延长线相交于,过点,连接并延长,使得,过点的延长线于,探究:之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数轴交与两点,与轴交与点,则能使是直角三角形的抛物线条数是(

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案