【题目】已知函数与轴交与,两点,与轴交与点,则能使是直角三角形的抛物线条数是( )
A. 0 B. 1 C. 2 D. 3
【答案】B
【解析】
首先求出抛物线与坐标轴的交点坐标,然后利用勾股定理求出AB和BC的长,再次根据△ABC是直角三角形,利用勾股定理列出n的一元二次方程,求出n的值即可.
令y=(x﹣n)(x﹣3)=0,解得:x=n或x=3.
假设3>n,A(3,0),B(n,0),令x=0,y=3n,即C点坐标为(0,3n),根据图形知:CB2=9+9n2,AC2=n2+9n2,AB2=(3﹣n)2,根据题意知△ABC是直角三角形,即BC2+AC2=AB2,整理得:9+9n2+n2+9n2=9﹣6n+n2,18n2+6n=0,解得:n=0或n=﹣.
当n=0时,这样的抛物线不满足题意,即n=﹣,所以能使△ABC是直角三角形的抛物线条数是1条.
故选B.
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;并写出B点坐标;
(2)请作出△ABC关于y轴对称的△A'B'C';
(3)请作出将△ABC向下平移的3个单位,再向右平移5个单位后的△A1B1C1;则点A1的坐标为_____;点B1的坐标为______,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小迪同学在学勾股定理时发现一类特殊三角形:在一个三角形中,如果一个角是另一个角的2倍,那么称这个三角形为“倍角三角形”.
如图1,在倍角中,,、、的对边分别记为,,,三角形的三边,,有什么关系呢?让我们一起来探索……
(1)已知“倍角三角形”的一个内角为,则这个三角形的另两个角的度数分别为______
(2)小迪同学先从特殊的“倍角三角形”入手研究,请你结合图2和图3填写下表:
三角形 | 角的已知量 | ||
图2 | ______ | ______ | |
图3 | ______ |
小迪同学根据上表,提出一般性猜想:在“倍角三角形”中,,那么,,三边满足:______;
(3)如图1:在倍角三角形中,,、、的对边分别记为,,,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,已知,与相交于点,与相交于点,与相交于点.
(1)如图,观察并猜想和有怎样的数量关系?并说明理由.
(2)筝形的定义:两组邻边分别相等的四边形叫做筝形. 如上图,证明四边形是筝形.
(3)如图,若,其他条件不变,求的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD。
(1)如图1,直接写出∠ABD的大小(用含的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是等边三角形,点、分别在、上,且,,、相交于点,连接,则下列结论:①;②;③;④,正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com