【题目】小迪同学在学勾股定理时发现一类特殊三角形:在一个三角形中,如果一个角是另一个角的2倍,那么称这个三角形为“倍角三角形”.
如图1,在倍角
中,
,
、
、
的对边分别记为
,
,
,三角形的三边
,
,
有什么关系呢?让我们一起来探索……
![]()
(1)已知“倍角三角形”的一个内角为
,则这个三角形的另两个角的度数分别为______
(2)小迪同学先从特殊的“倍角三角形”入手研究,请你结合图2和图3填写下表:
三角形 | 角的已知量 |
|
|
图2 |
| ______ | ______ |
图3 |
| ______ |
![]()
![]()
小迪同学根据上表,提出一般性猜想:在“倍角三角形”中,
,那么
,
,
三边满足:______;
(3)如图1:在倍角三角形中,
,
、
、
的对边分别记为
,
,
,求证:
.
科目:初中数学 来源: 题型:
【题目】如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.
(1)求抛物线解析式;
(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;
(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在
中,
,
.
(1)如图1,若直线
与
相交于
,过点
作
于
,连接
并延长
至
,使得
,过点
作
于
,证明:
.
(2)如图2,若直线
与
的延长线相交于
,过点
作
于
,连接
并延长
至
,使得
,过点
作
交
的延长线于
,探究:
、
、
之间的数量关系,并证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.
(1)求证:AE=AD.
(2)若AE=3,CD=4,求AB的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为美化校园,计划对面积为
的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为
区域的绿化时,甲队比乙队少用4天。
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少
?
(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点
是线段
的中点,
,
.
![]()
(1)如图1,若
,求证
是等边三角形;
(2)如图1,在(1)的条件下,若点
在射线
上,点
在点
右侧,且
是等边三角形,
的延长线交直线
于点
,求
的长度;
(3)如图2,在(1)的条件下,若点
在线段
上,
是等边三角形,且点
沿着线段
从点
运动到点
,点
随之运动,求点
的运动路径的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com