【题目】已知AB是⊙O的直径,弦CD⊥AB于点E.
(1)如图①,若CD=8,BE=2,求⊙O的半径;
(2)如图②,点G是上一点,AG的延长线与DC的延长线交于点F,求证:∠AGD=∠FGC.
【答案】(1)5 (2)见解析
【解析】
(1)连接OD,设⊙O的半径为r,根据垂径定理求出DE,根据勾股定理列式计算;
(2)连接AD,根据垂径定理得到 ,根据圆周角定理得到∠ADC=∠AGD,根据圆内接四边形的性质得到∠ADC=∠FGC,等量代换即可证明.
(1)解:如图①,连接OD,
设⊙O的半径为r,则OE=r﹣2,
∵AB是⊙O的直径,弦CD⊥AB,
∴DE=CD=4,
在Rt△OED中,OD2=OE2+DE2,即r2=(r﹣2)2+42,
解得:r=5,即⊙O的半径为5;
(2)证明:如图②,连接AD,
∵AB是⊙O的直径,弦CD⊥AB,
∴,
∴∠ADC=∠AGD,
∵四边形ADCG是圆内接四边形,
∴∠ADC=∠FGC,
∴∠FGC=∠AGD.
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.
(1)求证:四边形AEBO是矩形.
(2)若CD=5,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等边△ABC边长为2,D为BC中点,连接AD.点O在线段AD上运动(不含端点A、D),以点O为圆心,长为半径作圆,当O与△ABC的边有且只有两个公共点时,DO的取值范围为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.5米的正方形.点E、F分别在边和上,、和四边形均由单一材料制成,制成、和四边形的三种材料的价格依次为每平方米30元、20元、10元.若将此种地砖按图(2)所示的形式铺设,且中间的阴影部分组成正方形.设.
(1)________,_________.(用含有x的代数式表示).
(2)已知烧制该种地砖平均每块需加工费0.35元,若要长大于0.1米,且每块地砖的成本价为4元(成本价=材料费用+加工费用),则长应为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是( )
A.12<t≤3B.12<t<4C.12<t≤4D.12<t<3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).
(1)将线段AB向上平移两个单位长度,点A的对应点为点A1,点B的对应点为点B1,请画出平移后的线段A1B1;
(2)将线段A1B1绕点A1按逆时针方向旋转90°,点B1的对应点为点B2,请画出旋转后的线段A1B2;
(3)连接AB2、BB2,求△ABB2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣3,0和(﹣2,0)之间,其部分图象如图,则下列结论:①2a﹣b=0:②4ac﹣b2<0:③点(x1,y1),(x2,y2)在抛物线上若x1<x2,则y1<y2;④a+b+c<0.正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com