分析 只需先求出抛物线的顶点坐标,再求出抛物线与直线y=2x的交点,然后结合函数图象就可解决问题.
解答 解:解方程组$\left\{\begin{array}{l}{y=2x}\\{y=\frac{2}{x}}\end{array}\right.$,得
$\left\{\begin{array}{l}{{x}_{1}=1}\\{{y}_{1}=2}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-1}\\{{y}_{2}=-2}\end{array}\right.$.
①当抛物线y=x2+bx+c顶点为(1,2)时,
抛物线的解析式为y=(x-1)2+2=x2-2x+3.
解方程组$\left\{\begin{array}{l}{y={x}^{2}-2x+3}\\{y=2x}\end{array}\right.$,得
$\left\{\begin{array}{l}{{x}_{1}=1}\\{{y}_{1}=2}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=3}\\{{y}_{2}=6}\end{array}\right.$.
结合图象可得:![]()
当a2+ab+c>2a>$\frac{2}{a}$时,a的取值范围是-1<a<0或a>3;
②当抛物线y=x2+bx+c顶点为(-1,-2)时,
抛物线的解析式为y=(x+1)2-2=x2+2x-1.
∴c=-1<0,与条件c>0矛盾,故舍去.
故答案为-1<a<0或a>3.
点评 本题主要考查了直线与反比例函数图象的交点、抛物线的顶点坐标公式、直线与抛物线的交点等知识,运用数形结合的思想是解决本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 32 | B. | 16 | C. | 8 | D. | 16+a2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com