精英家教网 > 初中数学 > 题目详情
19.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案:①测量对角线是否互相平分;②测量两组对边是否分别相等;③测量对角线是否分别相等;④测量其中三个角是否都为直角,其中,错误的方案是①②③.

分析 根据矩形的判定方法:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形;由矩形的判定方法即可得出结论.

解答 解:①对角线是否相互平分,能判定平行四边形;
②两组对边是否分别相等,能判定平行四边形;
③对角线相等的四边形不一定是矩形,不能判定形状;
④其中四边形中三个角都为直角,能判定矩形.
故答案为:①②③.

点评 本题考查的是矩形的判定方法;牢记矩形的判定方法是解答本题的关键,难度较小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.分解因式:-2x+8=-2(x-4).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知二次函数y=x2+bx+c(其中b,c为常数,c>0)的顶点恰为函数y=2x和y=$\frac{2}{x}$的其中一个交点.则当a2+ab+c>2a>$\frac{2}{a}$时,a的取值范围是-1<a<0或a>3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.在?ABCD中,点F时BC边上一点,且BF=2CF,DF交对角线AC于点E,则$\frac{CE}{AC}$等于(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.用[x]表示不超过x的最大整数,把x-[x]称为x的小数部分,已知t=$\frac{1}{2-\sqrt{3}}$,a是t的小数部分,b是-t的小数部分,则$\frac{1}{2b}$-$\frac{1}{a}$=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.求下列各式中x的值.
(1)3x=$\frac{1}{81}$;(2)(-2)x=$\frac{1}{64}$;(3)($\frac{1}{2}$)x=16.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知,如图,∠A0B边上的点D.过点D作DF∥OA.(保留作图痕迹,不写作法)你有几种方法?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.分式$\frac{1}{x}$,$\frac{1}{x+1}$,$\frac{1}{x-1}$,$\frac{1}{{x}^{2}-1}$,$\frac{1}{{x}^{2}+2x+1}$的最简公分母是x(x-1)(x+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图①,在矩形ABCD中,将矩形折叠,使点B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”.
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”形状是一个等腰三角形;
(2)当“折痕△BEF”的顶点E位于AD的中点时,在图(2)中,作出这个“折痕△BEF”(要求尺规作图,保留作图痕迹,并写出作法);
(3)如图③,在矩形ABCD中,若AB=2,BC=4,当“折痕△BEF”的顶点F和点C重合时,设折痕与AB交于点N,求AN的长.

查看答案和解析>>

同步练习册答案