精英家教网 > 初中数学 > 题目详情

【题目】矩形中,AB=8BC=6,过对角线中点的直线分别交边于点.

(1)求证:四边形是平行四边形;

(2)当四边形是菱形时,求的长.

【答案】(1)详见解析;(2)

【解析】

1)根据平行四边形ABCD的性质,判定BOE≌△DOFASA),得出四边形BEDF的对角线互相平分,进而得出结论;
2)在RtADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.

1)证明:在矩形ABCD中,ABDC

OBD的中点

OB=OD

BOEDOF

BOE≌△DOF

EO=FO

BO=DO

∴四边形BEDF为平行四边形

2四边形BEDF为菱形

BE=DE DBEF

AB=8 BC=6 BE=DE=x,AE=8-x

RtADE

EF=2OE=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,将ABC绕顶点C逆时针旋转得到ABCMBC的中点,PAB的中点,连接PM,若BC2,∠BAC30°,则线段PM的最大值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,BC两点的坐标分别为B03)和C0,﹣),点Ax轴正半轴上,且满足∠BAO30°

1)过点CCEAB于点E,交AO于点F,点G为线段OC上一动点,连接GF,将OFG沿FG翻折使点O落在平面内的点O处,连接OC,求线段OF的长以及线段OC的最小值;

2)如图2,点D的坐标为D(﹣10),将BDC绕点B顺时针旋转,使得BCAB于点B,将旋转后的BDC沿直线AB平移,平移中的BDC记为BDC,设直线BCx轴交于点MN为平面内任意一点,当以BDMN为顶点的四边形是菱形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019423日是第二十四个世界读书日.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:

1)求本次比赛获奖的总人数,并补全条形统计图;

2)求扇形统计图中二等奖所对应扇形的圆心角度数;

3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加世界读书日宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴交于两点,,交轴于点,对称轴是直线

(1)求抛物线的解析式及点的坐标;

(2)连接是线段上一点,关于直线的对称点正好落在上,求点的坐标;

(3)动点从点出发,以每秒2个单位长度的速度向点运动,过轴的垂线交抛物线于点,交线段于点.设运动时间为秒.

①若相似,请直接写出的值;

能否为等腰三角形?若能,求出的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,地物线点均不为0)的顶点为,与轴的交点为,我们称以为顶点,对称轴是轴且过点的抛物线为抛物线的衍生抛物线,直线为抛物线的衍生直线.

1)求抛物线的衍生抛物线和衍生直线的解析式;

2)若一条抛物线的衍生抛物线和衍生直线分别是,求这条抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点DDFBC,交AB的延长线于点F.

(1)求证:DF为⊙O的切线;

(2)若∠BAC=60°,DE=,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+(m+2)x+2m-1=0.

(1)求证方程有两个不相等的实数根.

(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.

查看答案和解析>>

同步练习册答案