精英家教网 > 初中数学 > 题目详情
14.如图,四边形ABCD内接于⊙O,若∠ABC=40°,则∠ADC的度数是(  )
A.90°B.100°C.120°D.140°

分析 根据圆内接四边形的对角互补计算即可.

解答 解:∵四边形ABCD内接于⊙O,
∴∠ABC+∠ADC=180°,
又∵∠ABC=40°,
∴∠ADC=140°.
故选:D.

点评 本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\sqrt{8}$-(π-$\frac{1}{2}$)0+$\root{3}{-64}$+|1-$\sqrt{2}$|
(2)5x$\sqrt{xy}$÷3$\sqrt{\frac{y}{x}}$•$\frac{1}{3}$$\sqrt{\frac{x}{y}}$
(3)(1-2$\sqrt{3}$)(1+2$\sqrt{3}$)-(2$\sqrt{3}$-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.东台国贸大厦因换季将某种服装打折销售,如果每件服装按标价的6折出售将亏50元,而按标价9折出售将赚100元.问:
(1)每件服装的标价是多少元?
(2)每件服装的成本是多少元?
(3)为了保证不亏损,最多能打几折?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.等边△ABC中,AO是BC边上的高,D为AO上一点,以CD为一边,在CD下方作等边△CDE,连接BE.
(1)求证:△ACD≌△BCE;
(2)过点C作CH⊥BE,交BE的延长线于H,若BC=8,求CH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.
(1)求证:△ACD≌△BCE;
(2)填空:∠AEB的度数为60°;
拓展探究:如图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,点M为AB的中点,连接BE、CM、EM,求证:CM=EM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面材料:
小天在学习锐角三角函数中遇到这样一个问题:在Rt△ABC中,∠C=90°,∠B=22.5°,则tan22.5°=$\sqrt{2}$-1

小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题.于是小天尝试着在CB边上截取CD=CA,连接AD(如图2),通过构造有特殊角(45°)的直角三角形,经过推理和计算使问题得到解决.
请回答:tan22.5°=$\sqrt{2}$-1.
参考小天思考问题的方法,解决问题:
如图3,在等腰△ABC 中,AB=AC,∠A=30°,请借助△ABC,构造出15°的角,并求出该角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.2015年12月26日,新化县新能源纯电动公交车正式启运,从甲地到乙地,某人步行比乘公交车多用1.4小时,已知步行速度为每小时5千米,公交车速度为步行速度的8倍,求甲乙两地之间的相距.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.
运用上述知识,解决下列问题:
(1)如果(a+2)$\sqrt{2}$-b+3=0,其中a、b为有理数,那么a=-2,b=3;
(2)如果2b-a-(a+b-4)$\sqrt{3}$=5,其中a、b为有理数,求3a+2b的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在面积为4的等边△ABC的BC边上有一点D,连接AD,以AD为边作等边△ADE,连接BE.则四边形AEBD的面积是4.

查看答案和解析>>

同步练习册答案