【题目】已知函数解析式为y=(m-2)
(1)若函数为正比例函数,试说明函数y随x增大而减小
(2)若函数为二次函数,写出函数解析式,并写出开口方向
(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限
【答案】(1)详见解析;(2)y=-4x2,开口向下;(3)y=-x-1或y=-3x-1,函数在二四象限
【解析】
(1)根据正比例函数的定义求出m,再确定m-2的正负,即可确定增减性;
(2)根据二次函数的定义求出m,再确定m-2的值,即可确定函数解析式和开口方向;
(3)由题意可得-2=-1,求出m即可确定函数解析式和图像所在象限.
解:(1)若为正比例函数则 -2=1,m=±,
∴m-2<0,函数y随x增大而减小;
(2) 若函数为二次函数,-2=2且m-2≠0,
∴m=-2,函数解析式为y=-4x2,开口向下
(3)若函数为反比例函数,-2=-1, m=±1, m-2<0,
解析式为y=-x-1或y=-3x-1,函数在二四象限
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,与轴交于另一点.
(1)求的值及该抛物线的解析式;
(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△和等腰直角△,连接,试确定△面积最大时点的坐标.
(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与△相似,若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】试比较图中两个几何图形的异同,请分别写出它们的两个相同点和两个不同点。例如,相同点:正方形的对角线相等,正五边形的。对角线也相等;不同点:正方形是中心对称图形,正五边形不是中心对称图形。
相同点:①_________________;②___________________
不同点:①______________________;②____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点P从点B出发,沿折线运动,当它到达点A时停止,设点P运动的路程为点Q是射线CA上一点,,连接设,.
求出,与x的函数关系式,并注明x的取值范围;
补全表格中的值;
x | 1 | 2 | 3 | 4 | 6 |
______ | ______ | ______ | ______ | ______ |
以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点,并在x的取值范围内画出的函数图象:
在直角坐标系内直接画出函数图象,结合和的函数图象,求出当时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是()
A.①④⑤B.①③④⑤C.①③⑤D.①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。
(1)若点N在BC之间时,如图:
①求证:∠NPQ=∠PQN;
②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;
(2)当△PBN与△NCQ的面积相等时,求AP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.
(1)求证:DH是⊙O的切线;
(2)若⊙O的半径为4,
①当AE=FE时,求 的长(结果保留π);
②当 时,求线段AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,若点P和点关于y轴对称,点和点关于直线l对称,则称点是点P关于y轴,直线l的二次对称点.
如图1,点.
若点B是点A关于y轴,直线:的二次对称点,则点B的坐标为______;
若点是点A关于y轴,直线:的二次对称点,则a的值为______;
若点是点A关于y轴,直线的二次对称点,则直线的表达式为______;
如图2,的半径为若上存在点M,使得点是点M关于y轴,直线:的二次对称点,且点在射线上,b的取值范围是______;
是x轴上的动点,的半径为2,若上存在点N,使得点是点N关于y轴,直线:的二次对称点,且点在y轴上,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设抛物线与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C.且∠ACB=90°.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n )在抛物线上,过点A的直线交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com