精英家教网 > 初中数学 > 题目详情

【题目】正方形ABCD中,EAC上一点,EFABEGADAB=6,AEEC=2:1.求四边形AFEG的面积.

【答案】解答:正方形ABCD中,∠DAB=90°,∠DAC=45°,
又∵∠AFE=∠AGE=90°,
∴四边形AFEG是矩形,∠AEG=90°-∠DAC=45°,
∴∠GAE=∠AEG=45°,
GE=AG
∴矩形AFEG是正方形,
∵四边形ABCD是正方形,
∴正方形AFEG∽正方形ABCD
=( 2=( 2=
S正方形AFEG= S正方形AFEG= ×62=16.

【解析】先证明四边形AFEG是正方形,再由相似的定义得出正方形AFEG∽正方形ABCD , 最后根据相似多边形的面积比等于相似比的平方进行求解.
【考点精析】掌握相似图形是解答本题的根本,需要知道形状相同,大小不一定相同(放大或缩小);判定:①平行;②两角相等;③两边对应成比例,夹角相等;④三边对应成比例.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某水渠的横断面是等腰梯形,已知其斜坡ADBC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米求放水后水面上升的高度是(  )

A.0.55
B.0.8
C.0.6
D.0.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在梯形ABCD中,ABDCEF是梯形的中位线,ACEFGBDEFH , 以下说法错误的是(  )
A.ABEF
B.AB+DC=2EF
C.四边形AEFB和四边形ABCD相似
D.EG=FH

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒。

(1)t为何值时,CP把△ABC的周长分成相等的两部分。

(2)t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;

(3)t为何值时,△BCP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=6cmAC=12cm , 动点M从点A出发,以1cm∕秒的速度向点B运动,动点N从点C出发,以2cm∕秒的速度向点A运动,若两点同时运动,是否存在某一时刻t , 使得以点AMN为顶点的三角形与△ABC相似,若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是(
A. =
B.AD,AE将∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是(
A. =
B.AD,AE将∠BAC三等分
C.△ABE≌△ACD
D.SADH=SCEG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算: ﹣( 1+(2﹣ 0
(2)解方程:x2﹣4x+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得到△ABE,若AF=4.AB=7.
(1)旋转中心为;旋转角度为
(2)求DE的长度;
(3)指出BE与DF的关系如何?并说明理由.

查看答案和解析>>

同步练习册答案