精英家教网 > 初中数学 > 题目详情

【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.

1)根据图象信息,当t   分钟时甲乙两人相遇,甲的速度为   /分钟,乙的速度为   /分钟;

2)图中点A的坐标为   

3)求线段AB所直线的函数表达式;

4)在整个过程中,何时两人相距400米?

【答案】1244060;(2)(401600);(3)线段AB所表示的函数表达式为y40x;(4)在整个过程中,第20分钟和28分钟时两人相距400

【解析】

1)根据图象信息,当分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度路程时间可得甲的速度,进而求出乙的速度;

2)求出乙从图书馆回学校的时间即点的横坐标;

3)运用待定系数法求解即可;

4)分相遇前后两种情况解答即可.

解:(1)根据图象信息,当t24分钟时甲乙两人相遇,甲的速度为2400÷6040(米/分钟).

甲、乙两人的速度和为2400÷24100/分钟,

乙的速度为1004060(米/分钟).

故答案为:244060

2)乙从图书馆回学校的时间为2400÷6040(分钟),

40×401600

A点的坐标为(401600).

故答案为:(401600);

3)设线段AB所表示的函数表达式为ykx+b

A401600),B602400),

,解得

线段AB所表示的函数表达式为y40x

4)两种情况:迎面:(2400400÷10020(分钟),

走过:(2400+400÷10028(分钟),

在整个过程中,第20分钟和28分钟时两人相距400米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中A点的坐标为(8y),AB⊥x轴于点Bsin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D

1)求反比例函数解析式;

2)若函数y=3xy=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个半径为的圆形纸片在边长为的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片不能接触到的部分的面积是____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校初级中学数学兴趣小组为了解本校学生年龄情况,随机调查了本校部分学生的年龄,根据所调查的学生的年龄(单位:岁),绘制出如下的统计图和图,请根据相关信息,解答下列问题:

1)本次接受调查的学生人数为_______,图 的值为

2)求统计的这组学生年龄数据的平均数、众数和中位数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,连接BD,点E为CB边的延长线上一点,点F是线段AE的中点,过点F作AE的垂线交BD于点M,连接ME、MC.

(1)根据题意补全图形,猜想的数量关系并证明;

(2)连接FB,判断FB 、FM之间的数量关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:坐标平面内,对于抛物线yax2+bxa0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线yx2+2x的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线yax2+bxa0)焦点的纵坐标为3,准线方程为y5,则关于二次函数yax2+bx的最值情况,下列说法中正确的是(  )

A.最大值为4B.最小值为4

C.最大值为3.5D.最小值为3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于OAB是直径,C的中点,延长ADBC交于P,连结AC

1)求证:ABAP

2)当AB10DP2时,求线段CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚.对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.

收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:

26 32 40 51 44 74 44 63 73 74 81 54 62 41 33 54 43 34 51 63 64 73 64 54 33

27 35 46 55 48 36 47 68 82 48 57 66 75 27 36 57 57 66 58 61 71 38 47 46 71

整理、描述数据 按如下分组整理、描述这两组样本数据

个数

株数

大棚

5

5

5

5

4

1

2

4

6

2

(说明:45个以下为产量不合格,45个及以上为产量合格,其中4565个为产量良好,6585个为产量优秀)

分析数据 两组样本数据的平均数、众数和方差如下表所示:

大棚

平均数

众数

方差

53

54

3047

53

57

3022

得出结论:(1)估计乙大棚产量优秀的秧苗数为__________株;

2)可以推断出__________大棚的小西红柿秧苗品种更适应市场需求,理由为_____________________.(至少从两个不同的角度说明推断的合理性)

查看答案和解析>>

同步练习册答案