精英家教网 > 初中数学 > 题目详情

【题目】数轴是初中数学教材中数形结合的第一个实例,它包括原点,正方向和长度单位三要素,每一个实数都可以用数轴上的一个点来表示.

数轴上某一个点所对应的数为,另一个点对应的数为,则这两点之间的距离为________;

数轴上的数对应的点为,点位于点的右边,距个长度单位,为线段上的一点,,电子蚂蚁分别从同时出发,相向而行,的速度为个长度单位/秒,的速度为个长度单位/秒.

①当点距离相同时,求运动时间

②若电子蚂蚁通过秒后与电子蚂蚁相遇,求的值.

【答案】(1)10; (2) mm;②30.

【解析】

(1)根据两点间的距离公式求解即可;(2)①根据P、Q距C点距离相同,列出方程可求时间t;②根据电子蚂蚁Q通过C点1秒后与电子蚂蚁P相遇,由时间的等量关系列出方程可求m的值.

:(1)2-(-8)=10.
故这两点之间的距离为10.
故答案为:10;
(2)①依题意有:m-3t=m-2t,
解得t=m;
或3t+2t=m,
解得t=m.
故运动时间t为m或m.
②依题意有:
解得m=30.
故m的值为30.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.

(1)1+3+32+33+34+35+36的值

(2)1+a+a2+a3+…+a2013(a≠0a≠1)的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的限距点的定义如下:若P′为直线PC与⊙C的一个交点,满足r≤PP′≤2r,则称P′为点P关于⊙C的限距点,如图为点P及其关于⊙C的限距点P′的示意图.

(1)当⊙O的半径为1时.
①分别判断点M(3,4),N( ,0),T(1, )关于⊙O的限距点是否存在?若存在,求其坐标;
②点D的坐标为(2,0),DE,DF分别切⊙O于点E,点F,点P在△DEF的边上.若点P关于⊙O的限距点P′存在,求点P′的横坐标的取值范围;
(2)保持(1)中D,E,F三点不变,点P在△DEF的边上沿E→F→D→E的方向运动,⊙C的圆心C的坐标为(1,0),半径为r,请从下面两个问题中任选一个作答.

问题1

问题2

若点P关于⊙C的限距点P′存在,且P′随点P的运动所形成的路径长为πr,则r的最小值为

若点P关于⊙C的限距点P′不存在,则r的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于点B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,若tan∠ABO= ,OB=4,OE=2,点D的坐标为(6,m).
(1)求直线AB和反比例函数的解析式;
(2)求△OCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着手机的普及,微信一种聊天软件的兴起,许多人抓住这种机会,做起了微商,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况超额记为正,不足记为负单位:斤

星期

与计划量的差值

(1)根据记录的数据可知前三天共卖出 ______ 斤;

(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 ______ 斤;

(3)本周实际销售总量达到了计划数量没有?

(4)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DMDN分别交ABAC于点EF.则下列四个结论:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四边形AEDFBC2.其中正确结论是_____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列方程中变形正确的是(

3x+6=0变形为x+2=0;

2x+8=5-3x变形为x=3;

=4去分母,得3x+2x=24;

(x+2)-2(x-1)=0去括号,得x+2-2x-2=0.

A. ①③ B. ①②③ C. ①④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、C、N三点在同一直线上,在△ABC中,∠A:ABC:ACB=3:5:10,若△MNC≌△ABC,则∠BCM:BCN=_____

查看答案和解析>>

同步练习册答案