精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在△ABC中,C90,点DAB边上一点,以BD为直径的⊙O与边AC相切于点E,与边BC交于点F,过点EEHAB于点H,连结BE

1)求证:BCBH

2)若AB5AC4,求CE的长.

【答案】1)见解析 (2

【解析】

1)连接OE,如图,根据切线的性质得到OEAC,则可证明∠1=3,然后证明RtBEHRtBEC得到结论;

2)利用勾股定理计算出BC=3,求解,设CEx,则EHxAE4x.在RtAEH中,由勾股定理可得答案.

(1)证明:如图,连结OE.

∵OEOB,∴12

∵AC与⊙O相切,

∴ACOE,

∵BCAC,∴OE//BC,

23,

C90,EHAB,

∴△BCE≌△BHE(AAS)

∴BCBH;

(2)解:设CEx,

△BCE≌△BHE,

则EHx,AE4x.在Rt△ABC中,由勾股定理得:

由(1)可知:BHBC3,

∴AHABBH532.

在Rt△AEH中,由勾股定理得:

,解之得:

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=10BC=15tanA=PAD边上任意一点,连结PB,将PB绕点P逆时针旋转90°得到线段PQ.若点Q恰好落在平行四边形ABCD的边所在的直线上,则PB旋转到PQ所扫过的面积____(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.

时间(小时)

频数(人数)

频率

0≤t0.5

4

0.1

0.5≤t1

a

0.3

1≤t1.5

10

0.25

1.5≤t2

8

b

2≤t2.5

6

0.15

合计

1

(1)a b

(2)补全频数分布直方图;

(3)请估计该校1 500名初中学生中,约有多少学生在1.5小时以内完成家庭作业.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解市民对垃圾分类知识的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为.非常了解.了解.基本了解.不太了解四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(1,2),请根据图中的信息解答下列问题.

(1)这次调查的市民人数为 ,2,

(2)补全图1中的条形统计图;

(3)在图2中的扇形统计图中,.基本了解所在扇形的圆心角度数;

(4)据统计,2018年该市约有市民500万人,那么根据抽样调查的结果,可估计对垃圾分类知识的知晓程度为.不太了解的市民约有多少万人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的顶点,B分别在y轴、x轴上,OA2OB1,斜边ACx轴.若反比例函数(k0x0)的图象经过AC的中点D,则k的值为( )

A.8B.5C.6D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD,AB=6,DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF.以下结论:①∠BAF=BCF; ②点EAB的距离是2; SCDF:SBEF=9:4; tanDCF=3/7. 其中正确的有()

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于的一次函数和反比例函数的图像都经过点

求:(1)一次函数和反比例函数的解析式;

2)若一次函数和反比例函数图像的另一个交点的坐标为,请结合图像直接写出取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,⊙ORtACD的两直角边分别交于点EF,点F是弧BE的中点,∠C=90°,连接AF

1)求证:直线DF是⊙O的切线.

2)若BD=1OB=2,求tanAFC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A1的坐标为(24),以点O为圆心,以OA1长为半径画弧,交直线yx于点B1.过B1点作B1A2y轴,交直线y2x于点A2,以O为圆心,以OA2长为半径画弧,交直线yx于点B2;过点B2B2A3y轴,交直线y2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线yx于点B3;过B3点作B3A4y轴,交直线y2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线yx于点B4按照如此规律进行下去,点B2020的坐标为_____

查看答案和解析>>

同步练习册答案