【题目】水坝的横截面是梯形ABCD,现测得坝顶DC=4 m,坡面AD的坡度i为1:1,坡面BC的坡角β为60°,坝高3m,()求:
(1)坝底AB的长(精确到0.1);
(2)水利部门为了加固水坝,在保持坝顶CD不变的情况下降低AD的坡度(如图),使新坡面DE的坡度i为,原水坝底部正前方2.5m处有一千年古树,此加固工程对古树是否有影响?请说明理由.
【答案】(1)AB≈8.73m;(2)没有影响;理由见解析.
【解析】
(1)根据坡度公式求出AH和BF的长,再加上FH的长度即可.(2)根据坡度公式求出EH的长度,进而求出AE长度,若小于2.5则没有影响.
如图,
(1)分别过C,D作BE垂线,交BE于F,H,易得四边形CDHF是矩形,
∴CD=HF=4m,DH=CF=3m,
在Rt△ADH中,坡度i=1:1,
∴AH=DH=3m,
在Rt△BCF中,BC坡角为60 °,
∴BF=CF÷tan60°=√3≈1.73,
∴AB=AH+HF+FB=7+1.73=8.73m;
(2)Rt△EDH中,=,∴EH=3√3,
∴AE=EH-AH=3√3-3≈2.1m<2.5m,
所以没有影响.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为5,点E,F分别在AD,DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为( )
A.2B.4C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小甬工作的办公楼(矩形ABCD)前有一旗杆MN,MN⊥DN,旗杆高为12m,在办公楼底A处测得旗杆顶的仰角为30°,在办公楼天台B处测旗杆顶的仰角为45°,在小甬所在办公室楼层E处测得旗杆顶的俯角为15°.
(1)办公楼的高度AB;
(2)求小甬所在办公室楼层的高度AE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读):数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.
(理解):(1)如图,两个边长分别为、、的直角三角形和一个两条直角边都是的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;
(2)如图2,行列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:________;
(运用):(3)边形有个顶点,在它的内部再画个点,以()个点为顶点,把边形剪成若干个三角形,设最多可以剪得个这样的三角形.当,时,如图,最多可以剪得个这样的三角形,所以.
①当,时,如图, ;当, 时,;
②对于一般的情形,在边形内画个点,通过归纳猜想,可得 (用含、的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:内接于,直径交边于点,.
(1)如图所示,求证:;
(2)如图所示,过点作于H,交于,交于点,连接,求证:;
(3)如图所示,在(2)的条件下,延长至点,连接、,过点作于,射线交于点,交于点,连接,,若,,求的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一张圆形纸片,小芳进行了如下连续操作:
将圆形纸片左右对折,折痕为AB,如图.
将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.
将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.
连结AE、AF、BE、BF,如图.
经过以上操作,小芳得到了以下结论:
;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的半径为交于点D,点C是上一动点,以BC为边向下作等边.
当点C运动到时,
求证:BC与相切;
试判断点A是否在上,并说明理由.
设的面积为S,求S的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.
(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;
(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点.
(1)求该抛物线的解析式;
(2)抛物线的对称轴上是否存在一点,使的周长最小?若存在,请求出点的坐标,若不存在,请说明理由.
(3)设抛物线上有一个动点,当点在该抛物线上滑动到什么位置时,满足,并求出此时点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com