精英家教网 > 初中数学 > 题目详情

【题目】山西绵山是中国历史文化名山,因春秋时期晋国介子推携母隐居于此被焚而著称,如图1,是绵山上介子推母子的塑像,某游客计划测量这座塑像的高度,由于游客无法直接到达塑像底部,因此该游客计划借助坡面高度来测量塑像的高度;如图2,在塑像旁山坡坡脚A处测得塑像头顶C的仰角为75°,当从A处沿坡面行走10米到达P处时,测得塑像头顶C的仰角刚好为45°,已知山坡的坡度i=13,且OAB在同一直线上,求塑像的高度.(侧倾器高度忽略不计,结果精确到0.1米,参考数据:cos75°≈0.3tan75°≈3.71.4 1.7 3.2

【答案】17.5

【解析】

过点PPEOB于点EPFOC于点F,设PE=x,则AE=3x,在RtAEP中根据勾股定理可得PE=,则AE=3,设CF=PF=m米,则OC=m+)米、OAm-3)米,在RtAOC中,由tan75°=求得m的值,继而可得答案.

解:过点PPEOB于点EPFOC于点F

i=13AP=10

PE=x,则AE=3x

RtAEP中,x2+3x2=102

解得:x=x=(舍),

PE=,则AE=3

∵∠CPF=PCF=45°

CF=PF

CF=PF=m米,则OC=m+)米,OA=m3)米,

RtAOC中,tan75°==,即m+=tan75°m3),

解得:m≈14.3

OC=14.3+≈17.5米,

答:塑像的高度约为17.5米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下面从认知、延伸、应用三个层面来研究一种几何模型.

(认知)

如图1,已知点E是线段BC上一点,若求证:

(延伸)

如图2,已知点EF是线段BC上两点,AEDF交于点H,若求证:

(应用)

如图3是等边的外接圆,点D上一点,连接BD并延长交AC的延长线于点E;连接CD并延长交AB的延长线于点猜想BFBCCE三线段的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,反比例函数y=﹣在第二象限的图象上有一点A,过点AABx轴于点B,则SAOB_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶

点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),

则三角板的最大边的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,点IABC的内心,∠AIC=124°,点EAD的延长线上,则∠CDE的度数为(  )

A. 56° B. 62° C. 68° D. 78°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,PBA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CGAB,垂足为D.

(1)求证:∠PCA=ABC.

(2)过点AAEPC交⊙O于点E,交CD于点F,连接BE,若cosP=,CF=10,求BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x+分别与x轴、y轴交于B、C两点,点A在x轴上,ACB=90°,抛物线=ax2+bx+经过A、B两点.

(1)求A、B两点的坐标;

(2)求抛物线的解析式;

(3)点M是直线BC上方抛物线上的一点,过点M从作MHBC于点H,作轴MDy轴交BC于点D,求DMH周长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C坐标为(10),点A的坐标为(02).一次函数ykx+b的图象经过点BC,反比例函数y的图象也经过点B

(1)求反比例函数的关系式;

(2)直接写出当x0时,kx+b0的解集.

查看答案和解析>>

同步练习册答案