【题目】如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中点,到点O的距离等于BC的所有点组成的图形记为G,图形G与AB交于点D.
(1)补全图形并求线段AD的长;
(2)点E是线段AC上的一点,当点E在什么位置时,直线ED与 图形G有且只有一个交点?请说明理由.
【答案】(1)补全图形见解析;AD=;(2)当点E是AC的中点时,ED与图形G(⊙O)有且只有一个交点.证明见解析.
【解析】
(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知 ,可得关于AC. AD.AB的比例关系式,即可求出AD的长度;
(2)当ED与 相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点、在证明时,可连接OD,证OD⊥DE即可.
(1)依题意画出⊙O,如图所示.
在Rt△ACB中,
∵AC=3,BC=4,∠ACB=90°,
∴AB=5.
连接CD,
∵BC为直径,
∴∠ADC=∠BDC=90°.
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB.
∴ .
∴ .
(2)当点E是AC的中点时,ED与图形G(⊙O)有且只有一个交点.
证明:连接OD,
∵DE是Rt△ADC斜边上的中线,
∴ED=EC.
∴∠EDC=∠ECD.
∵OC=OD,
∴∠ODC=∠OCD.
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°.
∴ED⊥OD.
∴ED与⊙O相切.
∴直线ED与图形G(⊙O)有且只有一个交点.
科目:初中数学 来源: 题型:
【题目】如图,曲线AB是抛物线的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线的一部分.曲线AB与BC组成图形W由点C开始不断重复图形W形成一组“波浪线”.若点,在该“波浪线”上,则m的值为________,n的最大值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,过⊙T外一点P引它的两条切线,切点分别为M,N,若,则称P为⊙T的环绕点.
(1)当⊙O半径为1时,
①在中,⊙O的环绕点是___________;
②直线y=2x+b与x轴交于点A,y轴交于点B,若线段AB上存在⊙O的环绕点,求b的取值范围;
(2)⊙T的半径为1,圆心为(0,t),以为圆心,为半径的所有圆构成图形H,若在图形H上存在⊙T的环绕点,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,E为BC的中点,将△ABE沿直线AE折叠后,点B落在点F处,AF交对角线BD于点G,则FG的长是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,半径OC=6,D是半径OC上一点,且 OD=4.A,B是⊙O上的两个动点,∠ADB=90°,F是AB的中点,则OF的长的最大值等于______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),对称轴是x=1,现有结论:①abc>0 ②9a﹣3b+c=0 ③b=﹣2a④(﹣1)b+c<0,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点O是边AC的中点.
(1)在图1中,将△ABC绕点O逆时针旋转n°得到△A1B1C1,使边A1B1经过点C.求n的值.
(2)将图1向右平移到图2位置,在图2中,连结AA1、AC1、CC1.求证:四边形AA1CC1是矩形;
(3)在图3中,将△ABC绕点O顺时针旋转m°得到△A2B2C2,使边A2B2经过点A,连结AC2、A2C、CC2.
①请你直接写出m的值和四边形AA2CC2的形状;
②若AB=,请直接写出AA2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴的一个交点为,与轴的交点在点与点之间(包含端点),顶点的坐标为。则下列结论:①;②;③对于任意实数,总成立;④关于的方程没有实数根。其中结论正确的个数为()
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班数学兴趣小组对函数的图象和性质进行了探究,探究过程如下,请补充完整:
(1)自变量的取值范围是全体实数, 与的几组对应值如下:
其中,________.
(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
(3)观察函数图象,回答下列问题:
①函数图像的对称性是: .
②当时,写出随的变化规律: .
(4)进一步探究函数图象发现:方程有________个实数根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com