精英家教网 > 初中数学 > 题目详情

【题目】雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,雾霾的主要危害可归纳为两种:一是对人体产生危害,二是对交通产生危害.雾霾天气是一种大气污染状态,成都市区冬天雾霾天气比较严重,很多家庭兴起了为家里添置空气清洁器的热潮,为此,我市某商场根据民众健康要,代理销售某种进价为600/台的家用空气清洁器.经过市场销售后发现:在一个月内,当售价是700/台时,可售出350台,且售价每提高10元,就会少售出5台.

1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;

2)请计算当售价x(元台)定为多少时,该商场每月销售这种空气清洁器所获得的利润W(元)最大?最大利润是多少?

3)若政府计划遴选部分商场,将销售空气清洁器纳入民生工程项目,规定:每销售一台空气淸洁器,财政补贴商家200元,但销售利润不能高于进价的25%,请问:该商场想获取最大利润,是否参与竞标此民生工程项目?并说明理由.

【答案】1;(2)当x100时,w80000;(3)该商场想获取最大利润,会参与竞标此民生工程项目.

【解析】

1)由题意得:y350 x700),即可求解;

2)由题意得:wyx600),即可求解;

3)每台销售利润不能高于进价的25%,即600×1+25%)=750,即:x≤750,由题意得:w=(700x)(x600+200)=﹣x1400)(x400),x≤750时,当x750时,取得最大值利润,即可求解.

1)由题意得:y350x700)=﹣ x+700

2)由题意得:wyx600)=﹣x600)(x1400),

-0,故函数有最大值,当x=﹣100时,w80000

3)每台销售利润不能高于进价的25%,即600×1+25%)=750,即:x≤750

由题意得:w=(700x)(x600+200)=﹣x1400)(x400),

x≤750时,当x750时,取得最大值利润为:11375080000

故:该商场想获取最大利润,会参与竞标此民生工程项目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与反比例函数的图象交于CD两点,与xy轴交于BA两点,且tanABO=OB=4OE=2

1)求一次函数的解析式和反比例函数的解析式;

2)求OCD的面积;

3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本

1当销售单价为70元时,每天的销售利润是多少?

2求出每天的销售利润y与销售单价x之间的函数关系式,并求出自变量的取值范围

3如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?每天的总成本=每件的成本×每天的销售量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是正方形的边的中点,以为边作正方形 交于点,联结

1)求证:

2)设,求证

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD中,AB=6AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当PEB三点在同一直线上时对应t的值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点EFGH分别在ABBCCDAD边上且AE=CGAH=CF

1)求证:四边形EFGH是平行四边形;

2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,BAD=90°,点EBC的延长线上,且∠DEC=BAC.

(1)求证:DE是⊙O的切线;

(2)若ACDE,当AB=8,CE=2时,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=﹣x+2的图象,绕x轴上一点Pm0)旋转180°,所得的图象经过(0.﹣1),则m的值为(  )

A.2B.1C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题:

分数段

(分数为x分)

频数

百分比

60≤x70

8

20%

70≤x80

a

30%

80≤x90

16

b%

90≤x100

4

10%

1)表中的a b     

2)请补全频数分布直方图;

3)若用扇形统计图来描述成绩分布情况,则分数段70x80对应的圆心角的度数是

4)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽取2名同学接受电视台记者采访,请用列表或画树状图的方法求正好抽到一名男同学和一名女同学的概率.

查看答案和解析>>

同步练习册答案