【题目】我们不妨约定:在直角△ABC中,如果较长的直角边的长度为较短直角边长度的两倍,则称直角△ABC为黄金三角形
(1)已知:点O(0,0),点A(2,0),下列y轴正半轴上的点能与点O,点A构成黄金三角形的有 ;填序号①(0,1);②(0,2);③(0,3),④(0,4);
(2)已知点P(5,0),判断直线y=2x-6在第一象限是否存在点Q,使得△OPQ是黄金三角形,若存在求出点Q的坐标,若不存在,说明理由;
(3)已知:反比例函数与直线y=-x+m+1交于M,N两点,若在x轴上有且只有一个点C,使得∠MCN=90,求m的值,并判断此时△MNC是否为黄金三角形.
【答案】(1)①④;(2)Q坐标为(5,4);(3)是黄金三角形
【解析】
(1)根据黄金三角形的定义即可判断.
(2)假设存在.设Q(m,2m6),分两种情形分别求解即可.
(3)设M(x1,y1),N(x2,y2),MN的中点为k,当点K到x轴的距离等于时,满足条件.根据一元二次方程的根与系数的关系,构建方程求出m即可判断.
解:(1)因为点(0,0),点(2,0),根据黄金三角形的定义可知在y轴正半轴上的点
与原点的线段长度为1或者4,故结合题目可知与点,点构成黄金三角形的有或,故答案为①④.
(2)假设存在.设,
是直角三角形,当是直角三角形时,,
,解得:和4,
点在第一象限,,,
,,,是黄金三角形,
当时,,此时不满足黄金三角形的定义.
满足条件点点坐标为.
(3)设,,,,的中点为,当点到轴的距离等于 时,满足条件.
由,消去得到:,
,,.,
,,,
整理得:,,
如图,作轴于.
直线的解析式为,
,,
,,
,,
,不是黄金三角形.
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B=30°,P为AB中点,线段MV绕点P旋转,且M为射线AC上(不与点d重合)的任意一点,且N为射线BD上(不与点B重合)的一点,设∠BPN=α.
(1)求证:△APM≌△BPN;
(2)当MN=2BN时,求α的度数;
(3)若AB=4,60°≤α≤90°,直接写出△BPN的外心运动路线的长度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是 = =;
迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②请直接写出线段AD,BD,CD之间的等量关系式;
拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
①证明△CEF是等边三角形;
②若AE=5,CE=2,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCG(AB<BC)与矩形CDEF全等,点B,C,D在同一条直线上,∠APE的顶点P在线段BD上移动,使∠APE为直角的点P的个数是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC 的面积为 63,D 是 BC 上的一点,且 BD:BC=2:3, DE∥AC 交 AB 于点 E,延长 DE 到 F,使 FE:ED=2:1.连结 CF 交 AB 点于 G.
(1)求△BDE 的面积;
(2)求 的值;
(3)求△ACG 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
(1)求∠EAD的余切值;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB=2,C是AB上一动点,以AC、BC为边在AB同侧作正△ACE、正△BCF,连EF,点P为EF的中点.当点C从A运动到B时,P点运动路径长为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,在平面直角坐标系中,直线1:y=﹣x+4与坐标轴分别相交于点A、B与l2:y=x相交于点C.
(1)求点C的坐标;
(2)若平行于y轴的直线x=a交于直线1于点E,交直线l2于点D,交x轴于点M,且ED=2DM,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com