【题目】已知:如图,在△ABC中,∠ABC=90°,AB=BC,D是AC的中点,点E在AC上,点F在BC上,且AE=BF.
(1)求证:DE=DF;
(2)连接EF,求∠DEF的度数.
【答案】(1)证明见解析;(2)∠DEF=45°.
【解析】
(1)根据等腰直角三角形的性质得出∠A=∠C=∠DEC=45°,AD=BD=DC,BD⊥AC,根据SAS推出△AED≌△BFD,根据全等三角形的性质得出即可;
(2)根据△AED≌△BFD得出DE=DF,∠ADE=∠BDF,求出∠BDA=90°,推出∠EDF=∠BDA=90°,根据等腰三角形的性质和三角形的内角和定理得出即可.
(1)∵△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵D是AC的中点,∴BD=AD=DC,∴∠DBF=∠C=45°=∠A,又∵AE=BF,∴△AED≌△BFD(SAS),∴DE=DF(其他证法也可);
(2)∵AB=BC,AD=CD,∴BD⊥AC,∴∠BDA=90°,∴∠ADE+∠BDE=90°,∵△AED≌△BFD,∴∠ADE=∠BDF,∴∠BDF+∠BDE=90°,即∠EDF=90°.由(1)知DE=DF,∴∠DEF=∠DFE=45°.
科目:初中数学 来源: 题型:
【题目】如图:抛物线 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线ι⊥x轴于点F,交抛物线 于点E.
(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE取最大值时,把抛物线 向右平移得到抛物线 ,抛物线 与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线 应向右平移几个单位长度可得到抛物线 ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是;当m=5,n=2时,如图2,线段BC与线段OA的距离为;
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:
①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);
②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;
(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,
(1)若a=4,b=3,则c=_______;
(2)若a=24,c=30,则b=_______;
(3)若BC=11,AB=61,则AC=_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请根据图中提供的信息,回答下列问题
(1)一个暖瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.
(1)求证:BG=CF.
(2)请你判断BE+CF与EF的大小关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com