精英家教网 > 初中数学 > 题目详情

【题目】如图,已知 ,在射线 上取点 ,以 为圆心的圆与 相切;在射线 上取点 ,以 为圆心, 为半径的圆与 相切;在射线 上取点 ,以 为圆心, 为半径的圆与 相切; ;在射线 上取点 ,以 为圆心, 为半径的圆与 相切.若 的半径为 ,则 的半径长是

【答案】512
【解析】解:如图,连接O1A1,O2A2,O3A3,
∵⊙O1,⊙O2,⊙O3,……都与OB相切,
∴ O1A1⊥OB,
又∵∠AOB=30°,O1A1=r1=1=20.
∴OO1=2,
在Rt△OO2A2中,
∴OO1+O1O2=O2A2.
∴2+O2A2=2O2A2.
∴O2A2=r2=2=21.
∴OO2=4=22,
……
依此类推可得OnAn=rn=2=2n-1.
∴O10A10=r10=2=210-1=29=512.
所以答案是512.

【考点精析】根据题目的已知条件,利用数与式的规律和含30度角的直角三角形的相关知识可以得到问题的答案,需要掌握先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=m(x+1)(x﹣2)(m为常数,且m>0)与x轴从左至右依次交于A、B两点,与y轴交于点C,且OA=OC,经过点B的直线与抛物线的另一交点D在第二象限.

(1)求抛物线的函数表达式.
(2)若∠DBA=30°,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在求一个多边形的内角和时,由于疏忽,把一个内角加了两遍,而求出的结果为2004°,请问这个内角是多少度?这个多边形是几边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知∠1=115°,∠2=50°,∠3=65°,又∠NEG=∠GEB,试判断AB∥CD,EG∥FH是否成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探索新知)

如图1,点C在线段AB上,图中共有3条线段:ABACBC,若其中有一条线段的长度是另一条线段长度的两倍,则称点C是线段AB的“二倍点”.

(1)一条线段的中点   这条线段的“二倍点”;(填“是”或“不是”)

(深入研究)

如图2,若线段AB=20cm,点M从点B的位置开始,以每秒2cm的速度向点A运动,当点M到达点A时停止运动,运动的时间为t秒.

(2)问t为何值时,点M是线段AB的“二倍点”;

(3)同时点N从点A的位置开始,以每秒1cm的速度向点B运动,并与点M同时停止.请直接写出点M是线段AN的“二倍点”时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于任意实数 ,定义关于“ ”的一种运算如下: .例如:
(1)若 ,求 的值;
(2)若 ,求 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, AC BC BD AD ,垂足分别为C D AC BD AC BD 交于O

(1)求证: CAB DBA

(2)求证: SADO SBCO

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)画出与△ABC 关于 y 轴对称的图形△A1B1C1

(2)写出△A1B1C1 各顶点坐标;

(3)求△ABC 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE的值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案