精英家教网 > 初中数学 > 题目详情

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.

(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.

【答案】
(1)解:根据题意得:(30﹣2x)x=72,

解得:x=3,x=12,

∵30﹣2x≤18,

∴x=12;


(2)解:设苗圃园的面积为y,

∴y=x(30﹣2x)=﹣2x2+30x,

∵a=﹣2<0,

∴苗圃园的面积y有最大值,

∴当x= 时,即平行于墙的一边长15>8米,y最大=112.5平方米;

∵6≤x≤11,

∴当x=11时,y最小=88平方米;


(3)解:由题意得:﹣2x2+30x≥100,

∵30﹣2x≤18

解得:6≤x≤10.


【解析】(1)设这个苗圃园垂直于墙的一边的长为x米.则与墙平行的一边长为(30﹣2x)米,根据苗圃园的面积为72平方米,列出方程求解检验即可;
(2)设苗圃园的面积为y,由矩形面积公式得出y与x的函数关系式,根据抛物线的开口向下,得出苗圃园的面积y有最大值,当x= 时,即平行于墙的一边长15>8米,y最大=112.5平方米;6≤x≤11,当x=11时,y最小=88平方米;
(3)由这个苗圃园的面积不小于100平方米得出不等式,求解得出x6,联立题意得出x的取值范围。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】a≠0,函数y= 与y=﹣ax2+a在同一直角坐标系中的大致图象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,ABCD,PAB=130°,PCD=120°.求APC度数.

小明的解题思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50°+60°=110°.

问题迁移:

(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=α,BCP=β.试判断CPD、α、β之间有何数量关系?请说明理由;

(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、α、β间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,每个小正方形的边长都是1的方格纸中,有线段AB和线段CD,点A、B、C、D的端点都在小正方形的顶点上.

(1)①在方格纸中画出一个以线段AB为一边的菱形ABEF,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20.
②在方格纸中以CD为底边画出等腰三角形CDK,点K在小正方形的顶点上,且△CDK的面积为5.
(2)在(1)的条件下,连接BK,请直接写出线段BK的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.

(Ⅰ)求抛物线的解析式及点D的坐标;
(Ⅱ)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;
(Ⅲ)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线CD经过的顶点CCA=CBEF分别是直线CD上两点,且

1)若直线CD经过的内部,且EF在射线CD上,请解决下面两个问题:

如图1,若,则 (填号);

如图2,若,若使中的结论仍然成立,则应满足的关系是

2)如图3,若直线CD经过的外部,,请探究EF、与BEAF三条线段的数量关系,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,ABC三个顶点的坐标分别为A(24)B(21)C(52)

(1)请画出ABC关于x轴对称的A1B1C1

(2)A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2B2C2,请画出A2B2C2

(3)写出A1B1C1的面积;A2B2C2的面积.(不写解答过程,直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为

查看答案和解析>>

同步练习册答案