精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为

【答案】1或2
【解析】解:根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,

∵DE⊥BC,

∴∠FED=90°﹣∠EFD=60°,∠BEF=2∠FED=120°,

∴∠AEF=180°﹣∠BEF=60°,

∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,

∴AC=BCtan∠B=3× = ,∠BAC=60°,

如图①若∠AFE=90°,

∵在Rt△ABC中,∠ACB=90°,

∴∠EFD+∠AFC=∠FAC+∠AFC=90°,

∴∠FAC=∠EFD=30°,

∴CF=ACtan∠FAC= × =1,

∴BD=DF= =1;

如图②若∠EAF=90°,

则∠FAC=90°﹣∠BAC=30°,

∴CF=ACtan∠FAC= × =1,

∴BD=DF= =2,

∴△AEF为直角三角形时,BD的长为:1或2.

【考点精析】解答此题的关键在于理解含30度角的直角三角形的相关知识,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.

(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,下列推理不正确的是(   )

A.若∠AEB=∠C,则AECD

B.若∠AEB=∠ADE,则ADBC

C.若∠C+∠ADC180°,则ADBC

D.若∠AED=∠BAE,则ABDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,∠C90°,∠B30°AC6AD平分∠CABBCDE为射线AC上的一个动点,EFAD交射线AB于点F,联结DF

1)求DB的长;

2)当点E在线段AC上时,设AExSBDFy,求y关于x的函数解析式;(SBDF表示BDF的面积)

3)当AE为何值时,BDF是等腰三角形.(请直接写出答案,不必写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有实数根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图象,判断下列说法中错误的是( )

A. 当件数不超过30件时,每件价格为60

B. 当件数在3060之间时,每件价格随件数增加而减少

C. 当件数不少于60件时,每件价格都是45

D. 当件数为50件时.每件价格为55

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图甲是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图乙围成一个较大的正方形.

(1)请用两种方法表示图中阴影部分面积(只需表示,不必化简);

(2)比较(1)两种结果,你能得到怎样的等量关系?

请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度数;

(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)

(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象经过点(﹣,﹣ ),且图象与x轴的交点到原点的距离为1,则该一次函数的解析式为:_____

查看答案和解析>>

同步练习册答案