【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为 .
【答案】1或2
【解析】解:根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,
∵DE⊥BC,
∴∠FED=90°﹣∠EFD=60°,∠BEF=2∠FED=120°,
∴∠AEF=180°﹣∠BEF=60°,
∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,
∴AC=BCtan∠B=3× = ,∠BAC=60°,
如图①若∠AFE=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠EFD+∠AFC=∠FAC+∠AFC=90°,
∴∠FAC=∠EFD=30°,
∴CF=ACtan∠FAC= × =1,
∴BD=DF= =1;
如图②若∠EAF=90°,
则∠FAC=90°﹣∠BAC=30°,
∴CF=ACtan∠FAC= × =1,
∴BD=DF= =2,
∴△AEF为直角三角形时,BD的长为:1或2.
【考点精析】解答此题的关键在于理解含30度角的直角三角形的相关知识,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,下列推理不正确的是( )
A.若∠AEB=∠C,则AE∥CD
B.若∠AEB=∠ADE,则AD∥BC
C.若∠C+∠ADC=180°,则AD∥BC
D.若∠AED=∠BAE,则AB∥DE
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠C=90°,∠B=30°,AC=6,AD平分∠CAB交BC于D,E为射线AC上的一个动点,EF⊥AD交射线AB于点F,联结DF.
(1)求DB的长;
(2)当点E在线段AC上时,设AE=x,S△BDF=y,求y关于x的函数解析式;(S△BDF表示△BDF的面积)
(3)当AE为何值时,△BDF是等腰三角形.(请直接写出答案,不必写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(m+1)x+ (m2+1)=0有实数根.
(1)求m的值;
(2)先作y=x2﹣(m+1)x+ (m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发市场对外批发某品脾的玩具,其价格与件数关系如图所示,请你根据图象,判断下列说法中错误的是( )
A. 当件数不超过30件时,每件价格为60元
B. 当件数在30到60之间时,每件价格随件数增加而减少
C. 当件数不少于60件时,每件价格都是45元
D. 当件数为50件时.每件价格为55元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图乙围成一个较大的正方形.
(1)请用两种方法表示图中阴影部分面积(只需表示,不必化简);
(2)比较(1)两种结果,你能得到怎样的等量关系?
请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,
(1)若∠AOE=40°,求∠BOD的度数;
(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)
(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com