精英家教网 > 初中数学 > 题目详情

【题目】如图,已知A42)、Bn,﹣4)是一次函数ykx+b图象与反比例函数图象的两个交点.

1)求此反比例函数和一次函数的解析式;

2)直接写出AOB的面积;

3)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.

【答案】1y=﹣y=﹣x2;(2SAOB6;(3)﹣4x0x2

【解析】

1)利用待定系数法即可求出函数的解析式;

2)由(1)求出的一次函数解析式求出ABx轴的交点坐标(-2,0),从而将AOB分解为两个底边长为2的三角形,然后结合AB两点纵坐标求出各自三角形面积,最后相加即可;

3)根据一次函数的值小于反比例函数的值的x的取值范围就是对应的一次函数图像在反比例函数图像下方的自变量的取值范围求解即可.

解:(1)把(﹣42)代入y2,则m=﹣8

则反比例函数的解析式是y=﹣

把(n,﹣4)代入y=﹣n=﹣2

B的坐标是(2,﹣4).

根据题意得:

解得:,,

∴一次函数的解析式是y=﹣x2

2)设ABx轴的交点是C,则C的坐标是(﹣20).

OC2

SAOC2SBOC4

SAOB6

3)由函数图象可知x的取值范围时﹣4x0x2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:

(1)图象的另一支在第________象限;在每个象限内,的增大而________;

(2)常数的取值范围是________;

(3)若此反比例函数的图象经过点,求的值.点是否在这个函数图象上?点呢?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,∠B=∠CFBC的中点,DE分别为边ABAC上的点,且∠ADF=∠AEF.

(1)求证:△BDF△CEF.

(2)当∠A= 100°,BD=BF时,求∠DFE的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAD边上的一点,过C点作CFCEAB的延长线于点F.

1)求证:CDE∽△CBF

2)若BAF的中点,CB=3DE=1,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线yx2+ax+b经过点A(20)B(13)

(1)求抛物线的解析式;

(2)由图象直接写出:x取何值时,yx的增大而减少;

(3)根据图象回答:x取何值时,y0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠BAC90°,AB2AC4DBC边上一动点,GBC边上的一动点,GEAD分别交ACBA或其延长线于FE两点

1)如图1,当BC5BD时,求证:EGBC

2)如图2,当BDCD时,FG+EG是否发生变化?证明你的结论;

3)当BDCDFG2EF时,DG的值=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个转盘中指针落在每个数字上的机会相等,现同时转动两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.

(1)求该二次函数的解析式;

(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;

(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,∠BAC90°,直角∠EPF的顶点PBC的中点,两边PEPF分别交ABAC于点EF,现给出以下四个结论:(1AECF;(2EPF是等腰直角三角形;(3S四边形AEPFSABC;(4)当∠EPFABC内绕顶点P旋转时始终有EFAP.(点E不与AB重合),上述结论中是正确的结论的概率是(  )

A.1B.3C.D.

查看答案和解析>>

同步练习册答案