精英家教网 > 初中数学 > 题目详情
19.计算:
(1)$(-36)×(\frac{5}{4}-\frac{5}{6}-\frac{11}{12})$
(2)$-{1^4}-({1-\frac{1}{2}})÷3×|{3-{{({-3})}^2}}|$.

分析 (1)原式利用乘法分配律计算即可得到结果;
(2)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.

解答 解:(1)原式=-45+30+33=-45+63=18;
(2)原式=-1-$\frac{1}{2}$×$\frac{1}{3}$×6=-1-1=-2.

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.数学活动课上,同学们围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”其中一位同学作出了如图所示的图形.你认为他的作法的理由有到线段两端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置).现把n张这样的餐桌按如图方式拼接起来.
(1)问四周可以坐多少人用餐?(用n的代数式表示)
(2)若有26人用餐,至少需要多少张这样的餐桌?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.数学兴趣小组测量校园内旗杆的高度,有以下两种方案:

方案一:小明在地面直上立一根标杆EF,沿着直线BF后退到点D,使眼睛C、标杆的顶点E、旗杆的顶点A在同一直线上(如图1).测量:人与标杆的距离DF=1m,人与旗杆的距离DB=16m,人的目高和标杆的高度差EG=0.9m,人的高度CD=1.6m.
方案二:小聪在某一时刻测得1米长的竹竿竖直放置时影长1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上影长为21米,留在墙上的影高为2米(如图2).
请你结合上述两个方案,分别画出符合题意的示意图,并求出旗杆的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:$\sqrt{2}sin45°+6tan30°-2cos30°$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合.
(1)△ABC旋转了多少度?
(2)连接CE,试判断△AEC的形状.
(3)求∠AEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)$\sqrt{16}$+$\root{3}{-27}$-$\sqrt{(-3)^{2}}$;
(2)${({-2})^2}+{({\frac{{\sqrt{2}-\sqrt{3}}}{3}})^0}-\sqrt{4}-{({\frac{1}{2}})^{-1}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.下列四个立体图形中,左视图为矩形的是④.

查看答案和解析>>

同步练习册答案