精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论: ①∠EBG=45°; ②△DEF∽△ABG;
③SABG=SFGH ④AG+DF=FG.
其中正确的是 . (填写正确结论的序号)

【答案】①④
【解析】解:∵根据折叠得出∠BAG=∠FBG,∠CBE=∠FBE, 又∵四边形ABCD是矩形,
∴∠BAC=90°,
∴∠EBG= ,∴①正确;
∵四边形ABCD是矩形,
∴AB=DC=6,BC=AD=10,∠A=∠C=∠D=90°,
∴根据折叠得∠BFE=∠C=90°,
∴∠ABG+∠BGA=90°,∠EFD+∠BFA=90°,
∵∠BGA>∠BFA,
∴∠BAG≠∠EFD,
∵∠GHB=∠A=90°,∠EFB=∠C=90°,
∴∠GHB=∠EFB,
∴GH∥EF,
∴∠EFD=∠HGF,
根据已知不能推出∠AGB=∠HGF,
∴∠AGB≠∠EFD,
即△DEF和△ABG不全等,∴②错误;
∵根据折叠得:AB=BH=6,BC=BF=10,
∴由勾股定理得:AF= =8,
∴DF=10﹣8=2,HF=10﹣6=4,
设AG=HG=x,
在Rt△FGH中,由勾股定理得:GH2+HF2=GF2
即x2+42=(8﹣x)2
解得:x=3,
即AG=HG=3,
∴SABG= = =9,SFHG= = =6,∴③错误;
∵AG+DF=3+2=5,GF=10﹣3﹣2=5,∴④正确;
故答案为:①④.
根据矩形的性质得出∠A=∠C=∠D=∠ABC=90°,AB=CD=6,BC=AD=10,根据折叠得出∠BAG=∠FBG,∠CBE=∠FBE,AG=GH,BC=BF=10,AB=BH=6,根据勾股定理求出AG=GH=3,再逐个判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于不等式组 下列说法正确的是(  )

A. 此不等式组无解 B. 此不等式组有7个整数解

C. 此不等式组的负整数解是﹣321 D. 此不等式组的解集是x≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD,且ABCDEFAD上两点,CEADBFAD.若CEaBFbEFc,则AD的长为(

A. a+cB. b+cC. ab+cD. a+bc

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=CD,AD=BC,AC、BD相交于点O,过点O的直线交AD、BC于点F、E,则图中全等三角形共有_____对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.

(1)该班男生和女生各有多少人?

(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 中,ACB=90°,AC=BCD AB 的中点,点 E 是边 AC 上的一动点,点F 是边 BC 上的一动点.

(1) AE=CF试证明 DE=DF

(2)在点 E、点 F 的运动过程中,若 DEDF试判断 DE DF 是否一定相等? 并加以说明.

(3)在(2)的条件下,若 AC=2,四边形 ECFD 的面积是一个定值吗?若不是, 请说明理由,若是,请直接写出它的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某景点的门票价格规定如表

购票人数

1﹣50人

51﹣100人

100人以上

每人门票价

12元

10元

8元

某校八年(1)(2)两班共102人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元

(1)两班各有多少名学生?

(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绵阳农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:

穗长

4.5≤x5

5≤x5.5

5.5≤x6

6≤x6.5

6.5≤x7

7≤x7.5

频数

4

8

12

13

10

3

1)在图1、图2中分别出频数分布直方图和频数折线图;

2)请你对这块试验田里的水稻穗长进行分析;并计算出这块试验田里穗长在5.5≤x7范围内的谷穗所占的百分比.

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为2 的正方形ABCD中,点E是CD边的中点,延长BC至点F,使CF=CE,连接BE,DF.将△BEC绕点C按顺时针方向旋转.当点E恰好落在DF上的点H处时,连接AG、DG、BG,则AG的长是.

查看答案和解析>>

同步练习册答案