【题目】如图1,在中,,以为弦的与相切于点.
(1)求证:是的切线;
(2)将中以下部分沿直线向上翻折.
①如图2,若翻折后的弧过中点,并交于点,请判断与的关系,并说明理由.
②如图3,若,且翻折后的弧恰好过点,则的半径为________.
【答案】(1)见解析;(2)①,见解析,②2
【解析】
(1)连接OB,OC,根据等腰三角形的性质,得∠ABC=∠ACB,∠OBC=∠OCB,结合∠ABO=90°,即可得到结论;
(2)①连接DE,BE,由圆周角定理得,从而得,进而得DE∥BC,由点D是AB的中点,可得DE是ABC的中位线,进而即可得到结论;②连接AO,BO,CO,设AO交于点O′,易得是所在圆的直径,记交弧于点,两圆半径相等,那么点就是所在的圆的圆心,可得O′BO是等边三角形,再利用解直角三角形,即可得到答案.
(1)连接OB,OC,
∵AB=AC,OB=OC,
∴∠ABC=∠ACB,∠OBC=∠OCB,
∴∠ABO=∠ACO,
∵AB是的切线,
∴∠ABO=90°,
∴∠ACO=90°,
∴AC是的切线;
(2)①,理由如下:
连接DE,BE,
∵AB=AC,
∴∠ABC=∠ACB,
∴,
∴,即:,
∴∠BED=∠CBE,
∴DE∥BC,
∴∠ADE=∠ABC=∠ACB=∠AED,
∴AD=AE,
∵点D是AB的中点,
∴AD=AB,
∴AE=AC,
∴点E是AC的中点,
∴DE是ABC的中位线,
∴DE=BC.
综上所述:DE∥BC,DE=BC;
②连接AO,BO,CO,设AO交于点O′,
∵翻折后的弧恰好过点,∠ABO=90°,
∴AO是所在圆的直径,
∵所在圆与所在圆是等圆,
∴OO′既是所在圆的半径,也是所在圆的半径,
∴点O′是所在圆的圆心,
∴O′B=O′O=OB,
∴O′BO是等边三角形,即∠AOB=60°,
∴在RtAOB中,AO=AB÷sin60°==4,
∴OO′=2,
即:的半径为2.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为坐标原点,ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处,点B恰好为OE的中点,DE与BC交于点F.若y(k≠0)图象经过点C,且S△BEF=1,则k的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AC为直径,弧AE=弧BD,BE⊥DC交DC的延长线于点E.
(1)求证:∠1=∠BCE;
(2)求证:BE是⊙O的切线;
(3)若EC=1,CD=3,求cos∠DBA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正六边形ABCDEF的边长1,请仅用无刻度的直尺按要求画图.
(1)在图1中,画出一条长度为的线段;
(2)在图2中,画出一条长度为的线段,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A﹣B﹣C路线对索道进行检修维护.如图:已知米,米,AB与水平线的夹角是,BC与水平线的夹角是.求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,cos∠BED=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,函数的图象G经过点,直线与y轴交于点B,与图象G交于点C.
(1)求m的值.
(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.
①当直线l过点时,直接写出区域W内的整点个数.
②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中.对角线AC、BD交于点.点,点分别在线段,线段上,且,连接交于,连接交于,
(1)如图1,若点为线段中点,求的长;
(2)如图2,若平分,求证:;
(3)如图3,点在线段(含端点)上运动.连接,当线段长度取得最大值时,直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com