【题目】如图,在中,,,,将绕点逆时针旋转后得到,则图中阴影部分的面积是______.
【答案】
【解析】
根据含30度的直角三角形三边的关系得到AB=2AC=4,,根据互余得到∠CAB=60°,再根据旋转的性质得到AC′=AC=2,AB′=AB=4,B′C′=BC=2,∠B′AB=30°,∠C′AB′=∠CAB=60°,则∠C′AD=∠C′AB′∠BAB′=30°,接着在Rt△AC′D中,利用∠C′AD=30°可得C′D=AC′=,所以B′D=B′C′C′D=,然后根据三角形面积公式、扇形面积公式和图中阴影部分的面积=S扇形BAB′S△ADB′进行计算即可.
∵,,
∴,,.
∵将绕点逆时针旋转后得到,
∴,,,,,
∴.
在中,
∵,∴,
∴,
∴题图中阴影部分的面积=
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,已知点A,C在EF上,AD∥BC,DE∥BF,AE=CF.
(1)求证:四边形ABCD是平行四边形;
(2)直接写出图中所有相等的线段(AE=CF除外).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.
(1)已知抛物线.
① 在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是 ;
② 如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;
(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点在线段上,以为直径的与相交于点,与相交于点,.
(1)求证:是的切线;
(2)在(1)的条件下,判断以为顶点的四边形为哪种特殊四边形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:
(1)求反比例函数的解析式;
(2)求点D坐标,并直接写出y1>y2时x的取值范围;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于,两点,与轴,轴分别交于,两点.
(1)求一次函数的解析式;
(2)根据图象直接写出,时的取值范围;
(3)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市地铁1号线全长约60km,市政府通过招标,甲、乙两家地铁工程公司承担了施工任务,根据招标合同可知,甲公司每月计划施工效率是乙公司的1.2倍,则乙公司单独施工比甲公司单独施工多用10个月,且市政府需要支付给甲公司的施工费用为6亿元/km,乙公司的施工费用为5亿元/km.
(1)甲、乙两家地铁工程公司每月计划施工各为多少km?
(2)由于设备和施工现场只能供一家地铁工程公司单独施工的原因,现计划甲、乙两家公司共用55个月恰好完成施工任务(每家公司施工时间不足一个月按照一个整月计算),且甲公司施工时间不得少于乙公司的两倍,应如何安排才能使市政府支付给两家地铁工程公司的总费用最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:
(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;
(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,,以为弦的与相切于点.
(1)求证:是的切线;
(2)将中以下部分沿直线向上翻折.
①如图2,若翻折后的弧过中点,并交于点,请判断与的关系,并说明理由.
②如图3,若,且翻折后的弧恰好过点,则的半径为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com