【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为_____.
科目:初中数学 来源: 题型:
【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BDDF,连接CF、BE.
(1)求证:DBDE;
(2)求证:直线CF为⊙O的切线;
(3)若CF4,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图、图
、图
,在矩形
中,
是
边上的一点,以
为边作平行四边形
,使点
在
的对边
上,
如图
,试说明:平行四边形
的面积与矩形
的面积相等;
如图
,若平行四边形
是矩形,
与
交于点
,试说明:
、
、
、
四点在同一个圆上;
如图
,若
,平行四边形
是正方形,且
是
的中点,
交
于点
,连接
,判断以
为直径的圆与直线
的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是正方形ABCD外一点,连接AE、BE和DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=3.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④S正方形ABCD=8+
.则正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax+b(a≠0)与y轴交与点C,与双曲线y=(m≠0)交于A、B两点,AD⊥y轴于点D,连接BD,已知OC=AD=2,cos∠ACD=
.
(1)求直线AB和双曲线的解析式.
(2)求△ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ABC=45°,过C作AB边上的高CD,H为BC边上的中点,连接DH,CD上有一点F,且AD=DF,连接BF并延长交AC于E,交DH于G.
(1)若AC=5,DH=2,求DF的长.
(2)若AB=CB,求证:BG=AE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=-x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(-4,5),并与y轴交于点C,抛物线的对称轴为直线x=-1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=-1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分)
整理,分析过程如下:
成绩 学生 | ||||||
甲 | 0 | 1 | 4 | 5 | 0 | 0 |
乙 | 1 | 1 | 4 | 2 | 1 | 1 |
(1)两组数据的极差、平均数、中位数、众数、方差如下表所示,请补充完整:
学生 | 极差 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 83.7 | 86 | 13.21 | ||
乙 | 24 | 83.7 | 82 | 46.21 |
(2)若从甲、乙两人中选择一人参加知识竞赛,你会选 (填“甲”或“乙”),理由为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com