【题目】如图,在平面直角坐标系中,抛物线y1=(x-2)2+1与y2=x2-4x+c,过点A(1,-3)作直线l∥y轴,交抛物线y2于点B,交抛物线y1于 点C,则以下结论:
(1)抛物线y1与y轴的交点坐标为(0,1)
(2)若点D(-4,m)及点E(7,n)均在抛物线y1上,则m>n;
(3)若点B在点A的上方,则c>0;(4)若BC=2,则c=3 其中结论正确的是 ( )
A. (1)(2) B. (2)(3) C. (3)(4) D. (1)(4)
科目:初中数学 来源: 题型:
【题目】我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”. 例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.
请根据上述规定解答下列问题:
(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;
(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有A、B、C、D、O五个点,点O为原点,点C在数轴上表示的数是5,线段CD的长度为4个单位,线段AB的长度为2个单位,且B、C两点之间的距离为11个单位,请解答下列问题:
(1)点D在数轴上表示的数是 ,点A在数轴上表示的数是 ;
(2)若点B以每秒2个单位的速度向右匀速运动t秒运动到线段CD上,且BC的长度是3个单位,根据题意列出的方程是 ,解得t= ;
(3)若线段AB、CD同时从原来的位置出发,线段AB以每秒2个单位的速度向右匀速运动,线段CD以每秒3个单位的速度向左匀速运动,把线段CD的中点记作P,请直接写出,点P与线段AB的一个端点的距离为1.5个单位时运动的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2.
(1)求y与x的函数关系式;
(2)如果要围成面积为63m2的花圃,AB的长是多少?
(3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】目前,我市城市居民用电收费方式有以下两种:
普通电价付费方式:全天0. 52元/度;
峰谷电价付费方式:峰时(早8:00~晚21:00)0. 65元/度;谷时(晚21:00~早8:00)0. 40元/度.
(1)小丽老师家10月份总用电量为280度.
①若其中峰时电量为80度,则小丽老师家按照哪种方式付电费比较合适?能省多少元?
②若小丽老师交费137元,那么,小丽老师家峰时电量为多少度?
(2)到11月份付费时,小丽老师发现11月份总用电量为320度,用峰谷电价付费方式比普通电价付费方式省了18. 4元,那么,11月份小丽老师家峰时电量为多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下证明过程:
已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.
证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.
请用类似的方法证明以下问题:
已知:关于x的一元二次方程x2﹣(m+1)x+2m-3=0 有两个实根x1和x2.
求证:x1≠x2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,点C(3,8),E、F为AB、CD边上的中点,如图1,点A在原点处,点B在y轴正半轴上,点C在第一象限,若点A从原点出发,沿x轴向右以每秒1个单位长度的速度运动,点B随之沿y轴下滑,并带动矩形ABCD在平面内滑动,如图2,设运动时间表示为t秒,当点B到达原点时停止运动.
(1)当t=0时,点F的坐标为 ;
(2)当t=4时,求OE的长及点B下滑的距离;
(3)求运动过程中,点F到点O的最大距离;
(4)当以点F为圆心,FA为半径的圆与坐标轴相切时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】因课外阅读需要,学校图书馆向出版商邮购某系列图书,每本书单价为20元,邮购总费用包括书的价钱和邮费.相关的书价折扣、邮费如下表所示.
数量 | 折扣 | 邮费(元/次) |
不超过10本 | 九折 | 6元 |
超过10本 | 八折 | 实际总书价的10% |
(1)若一次邮购8本,共需总费用为 元.
若一次邮购12本,共需总费用为 元.
(2)已知图书馆需购书的总数是10的整数倍,且超过10本.
①若分次邮购、分别汇款,每次邮购10本,总费用为930元时,共邮购了多少本书?
②如果图书馆需购书的总数为60本,若你是图书馆负责人,从节约的角度出发,在 “每次邮购10本”与“一次性邮购”这两种方式中你会选择哪一种?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,Rt△ABC中,∠B=90°,∠CAB=30°,它的顶点A的坐标为(10,0),顶点B的坐标为(5,5),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),则点P的运动速度为 ;
(2)求(1)中面积S与时间t之间的函数关系式及面积S的最大值及S取最大值时点P的坐标;
(3)如果点P,Q保持(1)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有 个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com