【题目】安庆市在精准扶贫活动中,因地制宜指导农民调整种植结构,增加种植效益,2018年李大伯家在工作队的帮助下,计划种植马铃薯和蔬菜共15亩,预计每亩的投入与产出如下表:(每亩产出-每亩投入=每亩纯收入)
种类 | 投入(元) | 产出(元) |
马铃薯 | 1000 | 4500 |
蔬菜 | 1200 | 5300 |
(1)如果这15亩地的纯收入要达到54900元,需种植马铃薯和蔬菜各多少亩?
(2)如果总投入不超过16000元,则最多种植蔬菜多少亩?该情况下15亩地的纯收入是多少?
【答案】(1)需种植马铃薯11亩,需种植蔬菜4亩;(2)最多种植蔬菜5亩,该情况下15亩地的纯收入是55500元.
【解析】
(1)设需种植马铃薯x亩,需种植蔬菜y亩,根据等量关系:一共15亩地;这15亩地的纯收入要达到54900元;列出关于x和y的二元一次方程组,解出即可;
(2)设种植马铃薯a亩,则需种植蔬菜(15-a)亩,根据“总投入不超过16000元”,列出关于a的一元一次不等式,解出即可.
(1)设需种植马铃薯亩,需种植蔬菜亩,依题意有
,
解得.
故需种植马铃薯11亩,需种植蔬菜4亩;
(2)设种植马铃薯亩,则需种植蔬菜亩,依题意有
,
解得,
(亩),
(元).
答:最多种植蔬菜5亩,该情况下15亩地的纯收入是55500元.
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,点A、B为函数L图象上的任意两点,点A坐标为(x1 , y1),点B坐标为(x2 , y2),把式子 称为函数L从x1到x2的平均变化率;对于函数K:y=2x2﹣3x+1图象上有两点A(x1 , y1)和B(x2 , y2),当x1=1,x2﹣x1= 时,函数K从x1到x2的平均变化率是;当x1=1,x2﹣x1= (n为正整数)时,函数K从x1到x2的平均变化率是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.李萌与和谢娜同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).
请根据上面两个不完整的统计图回答以下4个问题:
(1)这次抽样调查中,共调查了 名学生.
(2)补全条形统计图中的缺项.
(3)在扇形统计图中,选择教师传授的所占圆心角的度数为 .
(4)根据调查结果,估算该校1800名学生中大约有多少人选择小组合作学习模式?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市开展一项自行车旅游活动,线路需经A,B,C,D四地,如图,其中A,B,C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,∠C=50°,AH,BD分别是△ABC高和角平分线,点P为边BC上一个点,当△BDP为直角三角形时,则∠CDP=_____度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=90°,AB=AC,D为BC的中点.
(1)如图1,写出点D到△ABC三个顶点A,B,C的距离的关系(直接写出结论);
(2)如图1,点E,F分别是AB,AC上的点,且BE=AF,求证:△DEF是等腰直角三角形;
(3)若点E,F分别是AB,CA的延长线上的点,仍有BE=AF,其他条件不变,请判断△DEF的形状?(直接写结论).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰三角形有如下性质:“在等腰三角形中,等边对等角”.即:如图1,在△ABC中,若AB=AC,则∠B=∠C.利用此性质解决以下问题:
如图2,在四边形ABCD中,AD∥BC,点E在边AD上,且CB=CE,点F是射线ED上的一个动点,∠ECF的平分线CG交BE的延长线于点G.
(1)若∠EBC=68°,∠ECF=40°,求G的度数;
(2)在动点F运动的过程中,∠G:∠EFC的值是否发生变化?若不变,求它的值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若x+y+z=15,-3x-y+z=-25,x、y、z皆为非负数,记整式5x+4y+z的最大值为a,最小值为b,则a﹣b =________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com