精英家教网 > 初中数学 > 题目详情

【题目】如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为  ▲  (用a的代数式表示).

【答案】12a

【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,

∴△DEF∽△CEB,△DEF∽△ABF。

∴S△DEF :S△CE B=(DE:CE)2,S△DEF :S△ABF=(DE:AB)2

∵CD=2DE,∴DE:CE=1:3,DE:AB=1:2,

∵S△DEF=a,∴S△CBE=9a,S△ABF=4a

∴S四边形BCDF=S△CEB﹣S△DEF=8a。∴SABCD=S四边形BCDF+S△ABF=8a+4a=12a

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AB=8,点P在边CD上,tanPBC=,点Q是在射线BP上的一个动点,过点QAB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.

1)如图1,当点R与点D重合时,求PQ的长;

2)如图2,试探索: 的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;

3)如图3,若点Q在线段BP上,设PQ=xRM=y,求y关于x的函数关系式,并写出它的定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰△ABC中,ABAC,以AB为直径的⊙OBC相交于点DBD2AD,过点DDEACBA延长线于点E,垂足为点F

1)求tanADF的值;

2)证明:DE⊙O的切线;

3)若⊙O的半径R5,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD.

(1)求证:四边形ABCD是菱形;

(2)过点C作CE⊥AB交AB的延长线于点E,连接OE,请你先补全图形,再求出当AB=,BD=2时,OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知Rt△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,将△ABC沿AC翻折得△ADC,点A和点D都在反比例函数y=的图象上,则k的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB2,∠D120°,将菱形翻折,使点A落在边CD的中点E处,折痕交边ADAB于点GF,则AF的长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2、图3是某公共汽车双开门的俯视示意图,ME,EF,FN是门轴的滑动轨道,,两门AB,CD的门轴A,B,C,D都在滑动轨道上,两门关闭时图2A,D分别在E,F处,门缝忽略不计(即B,C重合);两门同时开启,A,D分别沿,的方向匀速滑动,带动B,C滑动;B到达E时,C恰好到达F,此时两门完全开启.已知.(1)如图3,当时,______cm.(2)在(1)的基础上,当AM方向继续滑动15cm时,四边形ABCD的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形的两个顶点在反比例函数的图象上,对角线的交点恰好是坐标原点,已知点.

1)求反比例函数的解析式;

2)点轴上一点,若是等腰三角形,直接写出点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了如下的统计图1和图2,请根据图中相关信息,解决下列问题:

(Ⅰ)图1的值为____________,共有____________名同学参与问卷调查;

(Ⅱ)求统计的这组数据的平均数、众数和中位数;

(Ⅲ)全校共有学生1500人,根据样本数据,估计该校学生一个月阅读2本课外书的人数约为多少?

查看答案和解析>>

同步练习册答案