【题目】图2、图3是某公共汽车双开门的俯视示意图,ME,EF,FN是门轴的滑动轨道,,两门AB,CD的门轴A,B,C,D都在滑动轨道上,两门关闭时图2,A,D分别在E,F处,门缝忽略不计(即B,C重合);两门同时开启,A,D分别沿,的方向匀速滑动,带动B,C滑动;B到达E时,C恰好到达F,此时两门完全开启.已知.(1)如图3,当时,______cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为______.
【答案】(1); (2)2256.
【解析】
(1)由已知可得B、C两点的路程之比为5:4,再结合B运动的路程即可求出C运动的路程,相加即可求出BC的长;(2)当A向M方向继续滑动15cm时,AA'=15cm,由勾股定理和题目条件求出△A'EB'、△D'FC'和梯形A'EFD'边长,即可利用割补法求出四边形四边形ABCD的面积.
∵A、D分别在E、F处,门缝忽略不计(即B、C重合)且AB=50cm,CD=40cm.
∴EF=50+40=90cm
∵B到达E时,C恰好到达F,此时两门完全开启,
∴B、C两点的路程之比为5:4
(1)当∠ABE=30°时,在Rt△ABE中,,
∴B运动的路程为(50﹣25)cm
∵B、C两点的路程之比为5:4
∴此时点C运动的路程为 cm
∴BC=(50﹣25)+(40﹣20)=(90﹣45)cm
故答案为:90﹣45;
(2)当A向M方向继续滑动15cm时,设此时点A运动到了点A'处,点B、C、D分别运动到了点B'、C'、D'处,连接A'D',如图:
则此时AA'=15cm
∴A'E=15+25=40cm
由勾股定理得:EB'=30cm,
∴B运动的路程为50﹣30=20cm
∴C运动的路程为16cm
∴C'F=40﹣16=24cm
由勾股定理得:D'F=32cm,
∴四边形A'B'C'D'的面积=梯形A'EFD'的面积﹣△A'EB'的面积﹣△D'FC'的面积=×24×32=2556cm2.
∴四边形ABCD的面积为2556cm2.
故答案为:2556.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为4,
①用尺规作出点A到CD所在直线的距离;
②求出该距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.
(1)求证:四边形AECF是平行四边形;
(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.
(探究证明)
(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;
(2)如图2,求证:∠OAB=∠OAE′.
(归纳猜想)
(3)图1、图2中的“叠弦角”的度数分别为 , ;
(4)图n中,“叠弦三角形” 等边三角形(填“是”或“不是”)
(5)图n中,“叠弦角”的度数为 (用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90得到EF.
(1)如图1,若,点E与点C重合,AF与DC相交于点O.求证:.
(2)已知点G为AF的中点.
①如图2,若,求DG的长.
②若,是否存在点E,使得是直角三角形?若存在,求CE的长;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.
(1)求每台型、型净水器的进价各是多少元;
(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,5×5正方形方格纸图中,点A,B都在格点处.
(1)请在图中作等腰△ABC,使其底边AC=2,且点C为格点;
(2)在(1)的条件下,作出平行四边形ABDC,且D为格点,并直接写出平行四边形ABDC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送鲜花,感恩母亲,祝福母亲. 节日前夕,某花店采购了一批鲜花礼盒,成本价为30元每件,分析上一年母亲节的鲜花礼盒销售情况,得到了如下数据,同时发现每天的销售量(件)是销售单价(元/件)的一次函数.
销售单价 (元/件) | … | 30 | 40 | 50 | 60 | … |
每天销售量 (件) | … | 350 | 300 | 250 | 200 | … |
(1)求出与的函数关系;
(2)物价局要求,销售该鲜花礼盒获得的利润不得高于100﹪:
①当销售单价取何值时,该花店销售鲜花礼盒每天获得的利润为5000元?(利润=销售总价-成本价);
②试确定销售单价取何值时,花店销该鲜花礼盒每天获得的利润(元)最大?并求出花店销该鲜花礼盒每天获得的最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com