【题目】在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).
(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;
(2)求点M(x,y)在函数y=﹣的图象上的概率.
【答案】(1)树状图见解析,则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2).
【解析】
试题分析:(1)画出树状图,可求得所有等可能的结果;(2)由点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),直接利用概率公式求解即可求得答案.
试题解析:(1)树状图如下图:
则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)∵点M(x,y)在函数y=﹣的图象上的有:(1,﹣2),(2,﹣1),
∴点M(x,y)在函数y=﹣的图象上的概率为:.
科目:初中数学 来源: 题型:
【题目】“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有 个圆圈;第n个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级有 名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个不完整的统计图.请根据相关信息,解答下列问题:
(1)本次参加跳绳测试的学生人数为 ,图 中 的值为 ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校九年级跳绳测试中得 分的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了了解全校学生寒假参加社区实践活动的情况,学校随机调查本校100名学生参加社区实践活动的次数,并将调查所得的数据整理如下:
参加社区实践活动次数的频数、频率分布表
活动次数 | 频数 | 频率 |
20 | 0..20 | |
0.24 | ||
32 | ||
12 | ||
8 | ||
4 |
参加社区实践活动次数的频数分布直方图
根据以上图表信息,解答下列问题.
(1)表中______,_______.
(2)若频数分布直方图中,从左到右依次为第一组,第二组,……,第六组,那么样本数据的中位数落在第________组.
(3)请把频数分布直方图补充完整(画图后请标注相应的数据).
(4)若该校共有1200名学生,请估计这个寒假该校参加社区活动超过6次的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,将绕点顺时针旋转后得到,将线段绕点逆时针旋转后得到线段,分別以、为圆心,、长为半径画弧和弧,连接,则图中阴影部分的面积是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的顶点,分别在轴、轴上,对角线轴,反比例函数的图象经过矩形对角线的交点,若点,,则的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC 内接于⊙O,过点 A 作⊙O 的切线交 CB 的延长线于点 P,且∠PAB=45°.
(1)如图 1,求∠ACB 的度数;
(2)如图 2,AD 是⊙O 的直径,AD 交 BC 于点 E,连接 CD,求证:AC CD ;
(3)如图 3 ,在(2)的条件下,当 BC 4CD 时,点 F,G 分别在 AP,AB 上,连接 BF,FG,∠BFG=∠P,且 BF=FG,若 AE=15,求 FG 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,等边三角形OAB的一条边OB在x轴的正半轴上,点A在双曲线y=(k≠0)上,其中点B为(2,0).
(1)求k的值及点A的坐标
(2)△OAB沿直线OA平移,当点B恰好在双曲线上时,求平移后点A的对应点A’的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市为开发沿黄流域小白河渔业资源,鼓励养殖户开展混合养殖,现公布如下政策:每亩水面年租金为元;每亩水面可在年初混合投放公斤甲种鱼和公斤乙种鱼:经市场调查发现:每公斤甲种鱼的价格为元,每公斤甲种鱼的饲养费用为元,每公斤甲种鱼当年可获元收益;每公斤乙种鱼的价格为元,每公斤乙种鱼的饲养费用为元,每公斤乙种鱼当年可获元收益;
(1)某养殖户现有资金元,他准备再向银行贷款,用于甲乙鱼混合养殖,已知银行贷款的年利率为,试问该养殖户至少应租多少亩水面,并至少向银行贷款多少元,可使年利润不少于元?
(2)为了节省材料该养殖户利用河岸的一角的两边为边,用总长为米的围网在水库中围成了如图所示的①②③三块区域,其中区域①为直角三角形,区域②③为矩形,而且四边形为直角梯形.
I.若①②③这块区域的面积相等,则的长为 米;
II.设四边形的面积为求与之的函数关系式,并说明为何值时,有最大值?最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com