9.已知方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,老师让同学们解方程组$\left\{\begin{array}{l}{3{a}_{1}x+4{b}_{1y}=5{c}_{1}}\\{3{a}_{2}x+4{b}_{2}y=5{c}_{2}}\end{array}\right.$,小聪先觉得这道题好像条件不够,后将方程组中的两个方程同除以5,整理得$\left\{\begin{array}{l}{{a}_{1}•\frac{3}{5}x+{b}_{1}•\frac{4}{5}y={c}_{1}}\\{{a}_{2}•\frac{3}{5}x+{b}_{2}\frac{4}{5}y={c}_{2}}\end{array}\right.$,运用换元思想,得$\left\{\begin{array}{l}{\frac{3}{5}x=3}\\{\frac{4}{5}y=4}\end{array}\right.$,所以方程组$\left\{\begin{array}{l}{3{a}_{1}x+4{b}_{1}y=5{c}_{1}}\\{3{a}_{2}x+4{b}_{2}y=5{c}_{2}}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=5}\\{y=5}\end{array}\right.$,即得出方程组$\left\{\begin{array}{l}{{a}_{1}x-{b}_{1}y=m}\\{{a}_{2}x-{b}_{2}y=n}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=8}\\{y=10}\end{array}\right.$,请你求出方程组$\left\{\begin{array}{l}{{a}_{1}(x-2)-{b}_{1}(y+1)=m}\\{{a}_{2}(x-2)-{b}_{2}(y+1)=n}\end{array}\right.$的解.
分析 根据示例,运用换元思想,即可列出简易方程组,很容易求出方程组的解.
解答 解:∵$\left\{\begin{array}{l}{{a}_{1}x-{b}_{1}y=m}\\{{a}_{2}x-{b}_{2}y=n}\end{array}\right.$,
$\left\{\begin{array}{l}{{a}_{1}(x-2)-{b}_{1}(y+1)=m}\\{{a}_{2}(x-2)-{b}_{2}(y+1)=n}\end{array}\right.$,
又∵$\left\{\begin{array}{l}{{a}_{1}x-{b}_{1}y=m}\\{{a}_{2}x-{b}_{2}y=n}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=8}\\{y=10}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x-2=8}\\{y+1=10}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=10}\\{y=9}\end{array}\right.$.
点评 考查了二元一次方程组的解,本题给出了一些材料,考查了同学们的阅读分析能力,需要同学们有一定的逻辑分析能力.