精英家教网 > 初中数学 > 题目详情
17.若两条平行线被第三条直线所截,则一对同旁内角的角平分线(  )
A.互相平行B.互相垂直C.相交但不垂直D.互相垂直或平行

分析 作出图形,然后根据两直线平行,同旁内角互补以及角平分线的定义可得∠1+∠2=90°,再根据三角形的内角和定理求出∠C=90°,从而得解.

解答 解:如图,∵a∥b,
∴∠DAB+∠ABE=180°,
∵AC、BC分别是角平分线,
∴∠1=$\frac{1}{2}$∠DAB,∠2=$\frac{1}{2}$∠ABE,
∴∠1+∠2=$\frac{1}{2}$×180°=90°,
∴∠C=180°-(∠1+∠2)=180°-90°=90°,
∴AC⊥BC,
∴同旁内角的平分线互相垂直.
故选:B.

点评 本题考查了平行线的性质,用到的知识点是两直线平行,同旁内角互补,角平分线的定义,熟记性质是解题的关键,作出图形更形象直观.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知∠AGE=∠DHF,∠1=∠2,则图中的平行线有几对?分别是?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:
(1)$\sqrt{2}$($\sqrt{2}$-1);
(2)2$\sqrt{5}$-3$\sqrt{5}$;
(3)(-2)2-$\sqrt{4}$+2×(-3)+|1-$\sqrt{2}$|+$\root{3}{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.对于同一平面内的三条直线a,b,c有下列五个论断:①a∥c;②b∥c;③a⊥b;④a∥b;⑤a⊥c,以其中两个论断为条件,一个论断为结论,请写出两个正确的不同类型的命题:如果①a∥c,②b∥c,那么④a∥b;如果③a⊥b,⑤a⊥c,那么②b∥c.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.有以下四种说法:
①过一点有且只有一条直线与已知直线垂直;
②过直线外一点有且只有一条直线与已知直线平行;
③平行于同一条直线的两条直线平行;
④垂直于同一条直线的两条直线垂直;
③直线外一点和直线上所有点的连线中,垂线段最短.
其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知x2-3x+1=0,求x2+x-2的值(提示:由已知得x+$\frac{1}{x}$=3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知方程组$\left\{\begin{array}{l}{{a}_{1}x+{b}_{1}y={c}_{1}}\\{{a}_{2}x+{b}_{2}y={c}_{2}}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,老师让同学们解方程组$\left\{\begin{array}{l}{3{a}_{1}x+4{b}_{1y}=5{c}_{1}}\\{3{a}_{2}x+4{b}_{2}y=5{c}_{2}}\end{array}\right.$,小聪先觉得这道题好像条件不够,后将方程组中的两个方程同除以5,整理得$\left\{\begin{array}{l}{{a}_{1}•\frac{3}{5}x+{b}_{1}•\frac{4}{5}y={c}_{1}}\\{{a}_{2}•\frac{3}{5}x+{b}_{2}\frac{4}{5}y={c}_{2}}\end{array}\right.$,运用换元思想,得$\left\{\begin{array}{l}{\frac{3}{5}x=3}\\{\frac{4}{5}y=4}\end{array}\right.$,所以方程组$\left\{\begin{array}{l}{3{a}_{1}x+4{b}_{1}y=5{c}_{1}}\\{3{a}_{2}x+4{b}_{2}y=5{c}_{2}}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=5}\\{y=5}\end{array}\right.$,即得出方程组$\left\{\begin{array}{l}{{a}_{1}x-{b}_{1}y=m}\\{{a}_{2}x-{b}_{2}y=n}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=8}\\{y=10}\end{array}\right.$,请你求出方程组$\left\{\begin{array}{l}{{a}_{1}(x-2)-{b}_{1}(y+1)=m}\\{{a}_{2}(x-2)-{b}_{2}(y+1)=n}\end{array}\right.$的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,菱形ABCD边长为2cm,∠ABC=60°,且M是BC边的中点,P是对角线BD上一动点,则PM+PC的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,求BD的长.

查看答案和解析>>

同步练习册答案