分析 根据菱形的性质,得知A、C关于BD对称,根据轴对称的性质,将PM+PC转化为AP+PM,再根据两点之间线段最短得知AM为PM+PC的最小值.
解答 解:∵四边形ABCD为菱形,![]()
∴A、C关于BD对称,
∴连AM交BD于P,
则PM+PC=PM+AP=AM,
根据两点之间线段最短,AM的长即为PM+PC的最小值.
∵∠ABC=60°,
∴∠ABM=∠BAC=60°,
∴△ABC为等边三角形,
又∵BM=CM,
∴AM⊥BC,
∴AM=$\sqrt{A{B}^{2}-B{M}^{2}}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 此题考查了轴对称---最短路径问题,解答过程要利用菱形的性质及等腰三角形的性质,转化为两点之间线段最短的问题来解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 3 | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x | B. | y | ||
| C. | 两个中的任何一个都一样 | D. | 无法确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com