精英家教网 > 初中数学 > 题目详情
已知,等腰三角形中,两边的长分别为10cm和16cm,求它的底角的正弦、余弦和正切的值.
考点:解直角三角形,勾股定理
专题:计算题
分析:作底边BC边上的高AD,根据等腰三角形的性质得BD=
1
2
BC,然后分类讨论:当AB=AC=16,BC=10,如图1,则BD=5,在Rt△ABD中,利用勾股定理计算出AD=
231
,然后根据正弦、余弦和正切的定义求解;当AB=AC=1,0,BC=16,如图2,则BD=8,在Rt△ABD中,利用勾股定理计算出AD=6,然后根据正弦、余弦和正切的定义求解.
解答:解:△ABC为等腰三角形,且AB=AC,作AD⊥BC于D,
当AB=AC=16,BC=10,如图1,则BD=CD=
1
2
BC=5,
在Rt△ABD中,AD=
AD2-BD2
=
231

所以sinB=
AD
AB
=
231
16
,cosB=
BD
AB
=
5
16
,tanB=
AD
BD
=
321
5

当AB=AC=1,0,BC=16,如图2,则BD=CD=
1
2
BC=8,
在Rt△ABD中,AD=
AD2-BD2
=6,
所以sinB=
AD
AB
=
6
10
=
3
5
,cosB=
BD
AB
=
8
10
=
4
5
,tanB=
AD
BD
=
6
8
=
3
4
点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

下列各式中不能用完全平方公式分解的是(  )
A、-x2+2xy-y2
B、x4-2x3y+x2y2
C、m2-m+0.25
D、x2-xy+y2

查看答案和解析>>

科目:初中数学 来源: 题型:

有四张大小、形状完全相同的卡片,分别画有圆、平行四边形、矩形、一个锐角30°的直角三角形.从中任意抽取一张,记下图片的名称后放回、搅匀,再任意抽取一张.求两次抽取的卡片上的图形都是对称轴图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

分解因式
(1)6xy2-9x2y-y3
(2)(3a-b)2-4(a-b)2

查看答案和解析>>

科目:初中数学 来源: 题型:

求证:对任意自然数n(n>0),都有2n+4-2n是3的倍数.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:x+10=4x(x+1).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知|a-3|+|b-2|+|c+1|=0,求a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6,求第三次出发点的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知
a
b
=
b
c
=
c
a
,求
(a+b)(b+c)(a+c)
(a+b-c)(b+c-a)(c+a-b)
的值.

查看答案和解析>>

同步练习册答案