精英家教网 > 初中数学 > 题目详情

【题目】小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为abc,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为ABC

1)若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,请画树状图或列表求垃圾投放正确的概率;

2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共100吨生活垃圾,数据统计如下表(单位:吨):

试估计该小区居民“厨余垃圾”投放正确的概率约是多少.

【答案】1P(垃圾投放正确);(2)估计该小区“厨余垃圾”投放正确的概率约为

【解析】

1)首先画出树状图,由树状图得知总数为9,投放正确的有3种,进而求得垃圾投放正确的规律;

2)根据题意以及概率的定义求出规律即可。

1)如图所示:

小明将一袋分好类的生活垃圾随机投入一类垃圾箱;共有9种情况,

其中投放正确的有3种情况,

P(垃圾投放正确)

2)∵

∴估计该小区“厨余垃圾”投放正确的概率约为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,BEO的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.

(1)若∠ADE=25°,求∠C的度数;

(2)若AB=AC,CE=2,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴相较于A.B两点,与y轴相交于点C0-3),抛物线的对称轴为直线x=1.

1)求二次函数的解析式;

2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由;

3)若点Mx轴上,点P在抛物线上,是否存在以点AEMP为顶点且以AE为一边的平行四边形?若存在,请求出所有满足要求的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,C=90°,点OAC上,以OA为半径的OAB于点DBD的垂直平分线交BC于点E,交BD于点F,连接DE

1)判断直线DEO的位置关系,并说明理由;

2)若AC=6BC=8OA=2,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=x+1y轴交于点A,与x轴交于点D,抛物线y= x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程

(1)求证:不论m取何值时,方程总有两个不相等的实数根

(2)若方程的一个根为1,求m的值及方程的另一根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(04)B(10)C(50),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;

(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 

(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为2:1,点C2的坐标是   

(3)A2B2C2的面积是   平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把正方形ABCD绕点C按顺时针方向旋转得到正方形此时,落在对角线AC,落在CD的延长线上,AD于点E,连接CE

求证:(1)

(2)直线CE是线段的垂直平分线.

查看答案和解析>>

同步练习册答案