【题目】综合与实践:
问题情境:
如图 1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度数,小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC
问题解决:
(1)按小明的思路,易求得∠APC 的度数为 °;
问题迁移:
如图 2,AB∥CD,点 P 在射线 OM 上运动,记∠PAB=α,∠PCD=β.
(2)当点 P 在 B,D 两点之间运动时,问∠APC 与α,β 之间有何数量关系? 请说明理由;
拓展延伸:
(3)在(2)的条件下,如果点 P 在 B,D 两点外侧运动时 (点 P 与点 O,B,D 三点不重合)请你直接写出当点 P 在线段 OB 上时,∠APC 与 α,β 之间的数量关系 ,点 P 在射线 DM 上时,∠APC 与 α,β 之间的数量关系 .
【答案】(1)62;(2),理由详见解析;(3)
;
.
【解析】
(1)根据平行线的性质,得到∠APE=∠PAB=25°,∠CPE=∠PCD=37°,即可得到∠APC;
(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠APE=α,∠CPE=β,即可得出答案;
(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;
解:如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠PAB=25°,∠CPE=∠PCD=37°,
∴∠APC=25°+37°=62°;
故答案为:;
与
之间的数量关系是:
;
理由:如图,过点作
交
于点
,
∵,
;
如图3,所示,当P在射线
上时,
过P作PE∥AB,交AC于E,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠1=∠PAB=α,
∵∠1=∠APC+∠PCD,
∴∠APC=∠1∠PCD,
∴∠APC=αβ,
∴当P在射线上时,
;
如图4所示,当P在线段OB上时,
同理可得:∠APC=βα,
∴当P在线段OB上时,.
故答案为:;
.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D,交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③DC+BC=AB,正确的有( )
A.3个B.2个C.1个D.0 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E,求证:
(1)∠1=∠BAD;
(2)BE是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB为⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.
(1)如图1,若∠CPA恰好等于30°,求∠CDP的度数;
(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法不正确的是( )
A.△ABE的面积=△BCE的面积B.∠AFG=∠AGF
C.BH=CHD.∠FAG=2∠ACF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元.
(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;
(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com