【题目】某校要从小王和小李两名同学中挑选一人参加全国数学竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:
根据上表解答下列问题:
(1)完成下表:
姓名 | 极差(分) | 平均成绩(分) | 中位数(分) | 众数(分) | 方差 |
小王 | 40 | 80 | 75 | 75 | 190 |
小李 |
(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?
(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.
【答案】(1)见解析;(2)成绩比较稳定的是小李,小王的优秀率为40%,小李的优秀率为80%;(3)见解析.
【解析】
(1)根据平均数、中位数、众数、方差、极差的概念求得相关的数;
(2)方差反映数据的离散程度,所以方差越小越稳定,应此小李的成绩稳定;小王的优秀率=,小李的优秀率=;
(3)选谁参加比赛的答案不唯一,小李的成绩稳定,所以获奖的几率大;小王的90分以上的成绩好,则小王获一等奖的机会大.
(1)小李的平均分==80,中位数=80,众数=80,方差==40,极差=最大的数﹣最小的数=90﹣70=20;
(2)在这五次考试中,成绩比较稳定的是小李,小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;
(3)方案一:我选小李去参加比赛,因为小李的优秀率高,有4次得80分,成绩比较稳定,获奖机会大.
方案二:我选小王去参加比赛,因为小王的成绩获得一等奖的机率较高,有2次90分以上(含90分),因此有可能获得一等奖.
(注:答案不唯一,考生可任选其中一人,只要分析合理,都给满分.若选两人都去参加,不合题意不给分).
科目:初中数学 来源: 题型:
【题目】在△ABC中,已知∠CAB=60°,D、E分别是边AB、AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB,CD被EF所截,若已知∠1=∠2,说明AB//CD的理由.
解:根据__________ 得∠2=∠3,又因为∠1=∠2,
所以∠ ________ =∠ _________ ,
根据____________________________ 得:_________ // _________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?
小敏在思考问题时,有如下思路:连接AC.
结合小敏的思路作答:
(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由,参考小敏思考问题的方法解决一下问题;
(2)如图2,在(1)的条件下,若连接AC,BD.
①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;
②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么 的值为( ).
A. 49 B. 25 C. 13 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
档次 | 第一档 | 第二档 | 第三档 |
每月用电量x(度) | 0<x≤140 |
(2)小明家某月用电120度,需交电费 元
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知和均为等腰直角三角形,,点为的中点.过点与平行的直线交射线于点.
(1)当、、三点在同一直线上时(如图1),求证:为的中点;
(2)将图1中绕点旋转,当、、三点在同一直线上时(如图2),求证: 为等腰直角三角形;
(3)在(2)条件下,已知,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:有一组相邻内角相等的凸四边形叫做“等邻角四边形”.请解答下列问题:
(1)“梯形、长方形、正方形”中“等邻角四边形”是____________;
(2)如图,在中,,点在上,且,点、分别为、的中点,连接并延长交于点.求证:四边形是“等邻角四边形”;
(3)已知:在“等邻角四边形”中,,,,,请画出相应图形,并直接写出的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com