精英家教网 > 初中数学 > 题目详情

【题目】如图,是一块四边形绿地的示意图,其中AB长为24米,BC长15米,CD长为20米,DA长7米,C=90°,求绿地ABCD的面积.

【答案】绿地ABCD的面积为234平方米.

【解析】试题分析:连接BD,先根据勾股定理求出BD的长,再由勾股定理的逆定理判定△ABD为直角三角形,则四边形ABCD的面积=直角△BCD的面积+直角△ABD的面积.

试题解析:

连接BD.如图所示:

∵∠C=90°,BC=15米,CD=20米,

BD===25(米);

在△ABD中,BD=25米,AB=24米,DA=7米,

242+72=252,即AB2+BD2=AD2

∴△ABD是直角三角形.

S四边形ABCD=S△ABD+S△BCD

=ABAD+BCCD

=×24×7+×15×20

=84+150

=234(平方米);

即绿地ABCD的面积为234平方米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一次函数的图象经过点,且与二次函数的图象相交于两点.

(1)求这两个函数的表达式及点的坐标;

(2)在同一坐标系中画出这两个函数的图象,并根据图象回答:当取何值时,一次函数的函数值小于二次函数的函数值;

(3)求△BOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(12)如图,在矩形ABCD中,AB12cmBC8cm.点EFG分别从点

ABC同时出发,沿矩形的边按逆时针方向移动,点EG的速度均为2cm/s,点F的速

度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后

ts时,EFG的面积为Scm2

(1)t1s时,S的值是多少?

(2)写出St之间的函数解析式,并指出自变量t的取值范围;

(3)若点F在矩形的边BC上移动,当t为何值时,以点BEF为顶点的三角形与以CFG为顶点的三角形相似?请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 中,D BC 边的中点,E、F 分别在 AD 及其延长线上,CEBF,连接BE、CF.

(1)求证:BDF ≌△CDE;

(2)若 DE =BC,试判断四边形 BFCE 是怎样的四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.

(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;

(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)直接写出C点的坐标;

(2)求抛物线的解析式;

(3)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在锐角ABC中,AB=5tanC=3BDAC于点DBD=3,点P从点A出发,以每秒1个单位长度的速度沿AB向终点B运动,过点PPEAC交边BC于点E,以PE为边作RtPEF,使∠EPF=90°,点F在点P的下方,且EFAB.设PEFABD重叠部分图形的面积为S(平方单位)(S0),点P的运动时间为t(秒)(t0).

1)求线段AC的长.

2)当PEFABD重叠部分图形为四边形时,求St之间的函数关系式.

3若边EF与边AC交于点Q,连结PQ,如图②

①当PQPEF的面积分成12两部分时,求AP的长.

②直接写出PQ的垂直平分线经过ABC的顶点时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD

2)分别以点CD为圆心,CD长为半径作弧,交于点MN

3)连接OMMN

根据以上作图过程及所作图形,下列结论中错误的是(

A. ∠COM=∠CODB. OM=MN,则∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC,直线1过点C且垂直AC

1)请在直线1上作出点D,使得ABD的周长最小.

2)在(1)的条件下,连接ADBD,求证,AD2BD

查看答案和解析>>

同步练习册答案