【题目】如图,AB是⊙O的直径,D为⊙O上一点,过 上一点T作⊙O的切线TC,且TC⊥AD于点C.
(1)若∠DAB=50°,求∠ATC的度数;
(2)若⊙O半径为2,CT= ,求AD的长.
【答案】
(1)解:连接OT,如图1:
∵TC⊥AD,⊙O的切线TC,
∴∠ACT=∠OTC=90°,
∴∠CAT+∠CTA=∠CTA+∠ATO,
∴∠CAT=∠ATO,
∵OA=OT,
∴∠OAT=∠ATO,
∴∠DAB=2∠CAT=50°,
∴∠CAT=25°,
∴∠ATC=90°﹣25°=65°
(2)解:过O作OE⊥AC于E,连接OT、OD,如图2:
∵AC⊥CT,CT切⊙O于T,
∴∠OEC=∠ECT=∠OTC=90°,
∴四边形OECT是矩形,
∴OT=CE=OD=2,
∵OE⊥AC,OE过圆心O,
∴AE=DE= AD,
∵CT=OE= ,
在Rt△OED中,由勾股定理得:ED= ,
∴AD=2
【解析】(1)连接OT,根据同角的余角相等得出∠CAD=∠ATO,进而得出∠DAB=2CAT,解答即可;(2)过O作OE⊥AC于E,连接OT、OD,得出矩形OECT,求出OT=CE,根据垂径定理求出DE,根据矩形性质求出OT=CT,根据勾股定理求出即可.
【考点精析】本题主要考查了切线的性质定理的相关知识点,需要掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,已知l1⊥l2 , ⊙O与l1 , l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1 , l2重合,AB=4 cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).
(1)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1 , A1 , C1恰好在同一直线上,则移动时间t= .
(2)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y=kx经过点A(2,4),AB⊥x轴于点B.
(1)求该正比例函数的解析式;
(2)将△ABO绕点A逆时针旋转90°得到△ADC,求点C的坐标;
(3)试判断点C是否在直线y= x+1的图象上,说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A1 , A2 , A3 , …An是x轴上的点,且OA1=A1A2=A2A3=…=An﹣1An=1,分别过点A1 , A2 , A3 , …An作x轴的垂线交反比例函数y= (x>0)的图象于点B1 , B2 , B3 , …Bn , 过点B2作B2P1⊥A1B1于点P1 , 过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1 , △B2P2B3的面积为S2…,△BnPnBn+1的面积为Sn , 则S1+S2+S3+…+Sn= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠BAC的平分线与线段BC的垂直平分线PQ相交于点P,过点P分别作PN垂直于AB于点N,PM垂直于AC于点M,BN和CM有什么数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:
①两边和其中一边的对角对应相等的两个三角形全等.
②角的对称轴是角平分线
③两边对应相等的两直角三角形全等
④成轴对称的两图形一定全等
⑤到线段两端距离相等的点在线段的垂直平分线上,
正确的有 个.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,二次函数y= x2+bx+c与一次函数y= x﹣3的图象都经过x轴上点A(4,0)和y轴上点B(0,﹣3),过动点M(m,0)(0<m<4)作x轴的垂线交直线AB于点C,交抛物线于点P.
(1)求b,c的值;
(2)点M在运动的过程中,能否使△PBC为直角三角形?如果能,求出点P的坐标;如果不能,请说明理由;
(3)如图2,过点P作PD⊥AB于点,设△PCD的面积为S1 , △ACM的面积为2 , 若 = ,
①求m的值;
②如图3,将线段OM绕点O顺时针旋转得到OM′,旋转角为α(0°<α<90°),连接M'A、M'B,求M'A+ M'B的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,DE⊥AC于点E,且AE=CE,DE=5,EB=12.
(1)求AD的长;
(2)若∠CAB=30°,求四边形ABCD的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com