【题目】阅读材料:一元二次方程ax2+bx+C=0(a≠0),当△≥0时,设两根为x1,x2,则两根与系数的关系为:x1+x2=;x1x2=.
应用:(1)方程x2﹣2x+1=0的两实数根分别为x1,x2,则x1+x2= ,x1x2= .
(2)若关于x的方程x2﹣2(m+1)x+m2=0的有两个实数根x1,x2,求m的取值范围;
(3)在(2)的条件下,若满足|x1|=x2,求实数m的值.
科目:初中数学 来源: 题型:
【题目】如图,一位篮球运动员在距离篮圈中心水平距离处跳起投篮,球沿一条抛物线运动,当球运动的水平距离为时,达到最大高度,然后准确落入篮筐内,已知篮圈中心距离地面高度为,试解答下列问题:
(1)建立图中所示的平面直角坐标系,求抛物线所对应的函数表达式.
(2)这次跳投时,球出手处离地面多高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.
(1)求证:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,∠D=60°,点M在线段AD上,DM= ,AM=2,点E从点D出发,沿着D-C-B-A匀速运动,速度为每秒2个单位长度,达到A点后停止运动,设△MDE的面积为y,点E运动的时间为t(s),y与t的部分函数关系如图②所示.
(1)如图①中,DC=_____,如图②中,m=_______,n=_____.
(2)在E点运动过程中,将平行四边形沿ME所在直线折叠,则t为何值时,折叠后顶点D的对应点D′落在平行四边形的一边上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴相交于两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.
⑴求此抛物线的解析式;
⑵当点位于轴下方时,求面积的最大值;
⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.
①求关于的函数解析式,并写出自变量的取值范围;
②当时,直接写出的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于点、(点在点的左侧),与轴交于点.
(1)求点,点的坐标;
(2)我们规定:对于直线,直线,若,则直线;反过来也成立.请根据这个规定解决下列问题:
①直线与直线是否垂直?并说明理由;
②若点是抛物线的对称轴上一动点,是否存在点与点,点构成以为直角边的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=2.
(1)试在图中画出将△ABC以B为旋转中心,沿顺时针方向旋转90°后的图形△A1BC1;
(2)若点B的坐标为(-1,-4),点C的坐标为(-3,-4),试在图中画出直角坐标系,并写出点A的坐标;
(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.
(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;
(2)在该不透明袋子中同时摸出两个球,求摸出的两个球颜色不同的概率.(要求列表或画树状图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车租赁公司共有汽车50辆,市场调查表明,当租金为每辆每日200元时可全部租出,当租金每提高10元,租出去的车就减少2辆.
(1)当租金提高多少元时,公司的每日收益可达到10120元?
(2)公司领导希望日收益达到10200元,你认为能否实现?若能,求出此时的租金,若不能,请说明理由.
(3)汽车日常维护要一定费用,已知外租车辆每日维护费为100元,未租出的车辆维护费为50元,当租金为多少元时,公司的利润恰好为5500元?(利润=收益一维护费).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com