精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线轴交于点(点在点的左侧),与轴交于点.

(1)求点,点的坐标;

(2)我们规定:对于直线,直线,若,则直线;反过来也成立.请根据这个规定解决下列问题:

①直线与直线是否垂直?并说明理由;

②若点是抛物线的对称轴上一动点,是否存在点与点,点构成以为直角边的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.

【答案】(1)点坐标为,点坐标为;(2) ①不垂直,理由详见解析;②存在,点的坐标为.

【解析】

1)令,求出x的值,根据点在点的左侧求出A的坐标,令,求出y的值即可求出C的坐标;

2)①分别求出两条直线的斜率,然后根据两斜率的积不等于-1即可证明两直线不垂直;②根据点,点的坐标求出直线AC的函数表达式,然后对时与时两种情况分别讨论计算即可.

解:

1)当时,,解得

∵点在点的左侧,

∴点坐标为

时,

∴点坐标为.

2)①不垂直;由,得,由,得

∴直线与直线不垂直;

②存在.

抛物线的对称轴为直线.

设直线,根据题意得,解得

直线的函数表达式为

分两种情况:Ⅰ)当时,如图,根据新定义可设

∵点坐标为

直线的函数表达式为,当时,

此时点坐标为

Ⅱ)时,如图,根据新定义可设

∵点坐标为

∴直线的函数表达式为,当时,

此时点坐标为

综上,点的坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数,它与轴交于,且位于原点两侧,与的正半轴交于,顶点轴右侧的直线上,则下列说法:① 其中正确的结论有(

A.①②B.②③C.②③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程

1)若此方程的一个根为1,求的值;

2)求证:不论取何实数,此方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小华是数学兴趣小组的一名成员,他在学过二次函数的图像与性质之后,对的图像与性质进行了探究,探究过程如下,请你补充完整.

1)小刚通过计算得到几组对应的数值如下

0

1

2

3

4

5

0

4

6

6

4

6

6

4

0

填空:自变量的取值范围是____________________________.

2)在如图所示的平面直角坐标系中,描出上表中各组对应数值的点,并根据描出的点,画出该函数的图像.

3)请你根据画出的图像,写出此函数的两条性质;

__________________________________________

__________________________________________.

4)直线经过,若关于的方程4个不相等的实数根,则的取值范围为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:一元二次方程ax2+bx+C0a≠0),当≥0时,设两根为x1x2,则两根与系数的关系为:x1+x2x1x2

应用:(1)方程x22x+10的两实数根分别为x1x2,则x1+x2   x1x2   

2)若关于x的方程x22m+1x+m20的有两个实数根x1x2,求m的取值范围;

3)在(2)的条件下,若满足|x1|x2,求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形纸片的中点,上一动点,沿折叠,点落在点处;延长点,连接.

1)求证:

2)当时,将沿折叠,点落在线段上点.

①求证:

②如果,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,ABACOBOC,∠A90°,∠MONα,分别交直线ABAC于点MN

1)如图1,当α90°时,求证:AMCN

2)如图2,当α45°时,问线段BMMNAN之间有何数量关系,并证明;

3)如图3,当α45°时,旋转∠MON,问线段之间BMMNAN有何数量关系?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】表中所列 的7对值是二次函数 图象上的点所对应的坐标,其中

x

y

7

m

14

k

14

m

7

根据表中提供的信息,有以下4 个判断:

;② ;③ 当时,y 的值是 k;④ 其中判断正确的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8AD=6,点EAB上一点,AE=2,点FAD上,将AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____

查看答案和解析>>

同步练习册答案