精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,ABACOBOC,∠A90°,∠MONα,分别交直线ABAC于点MN

1)如图1,当α90°时,求证:AMCN

2)如图2,当α45°时,问线段BMMNAN之间有何数量关系,并证明;

3)如图3,当α45°时,旋转∠MON,问线段之间BMMNAN有何数量关系?并证明.

【答案】(1)证明见解析;2BMAN+MN,理由见解析;(3MNAN+BM.理由见解析.

【解析】

1)根据题意ABAC,∠BAC90°,得出是一个等腰直角三角形,再根据三线合一得出OAOBOC,从而ABO=∠ACO=∠BAO=∠CAO45°,且AOBC从而得出MON=∠AOC90°,再又因为等角的余角相等,所以∠AOM=∠CON,所以通过证明AOM≌△CON得出AMCN

2)根据题意,BA上截取BGAN,连接GOAO,先证明BGO≌△AON再证明GMO≌△NMO得出GMMN,从而证明出BMAN+MN

(3)根据题意,过点OOGON,连接AO,先证明NAO≌△GBO,得到AN

GBGOON,再证明△MON≌△MOG得到MNMG,从而进一步证明出MNAN+BM

证明:(1)如图1,连接OA

ABAC,∠BAC90°,OBOC

AOBCOAOBOC,∠ABO=∠ACO=∠BAO=∠CAO45°,

∴∠MON=∠AOC90°,

∴∠AOM=∠CON,且AOCO,∠BAO=∠ACO45°,

∴△AOM≌△CONASA

AMCN

2BMAN+MN

理由如下:如图2,在BA上截取BGAN,连接GOAO

ABAC,∠BAC90°,OBOC

AOBCOAOBOC,∠ABO=∠ACO=∠BAO=∠CAO45°,

BGAN,∠ABO=∠NAO45°,AOBO

∴△BGO≌△AONSAS

OGON,∠BOG=∠AON

∵∠MON45°=∠AOM+AON

∴∠AOM+BOG45°,且∠AOB90°,

∴∠MOG=∠MON45°,且MOMOGONO

∴△GMO≌△NMOSAS

GMMN

BMBG+GMAN+MN

3MNAN+BM

理由如下:如图3,过点OOGON,连接AO

ABAC,∠BAC90°,OBOC

AOBCOAOBOC,∠ABO=∠ACO=∠BAO=∠CAO45°,

∴∠GBO=∠NAO135°,

MOGO

∴∠NOG90°=∠AOB

∴∠BOG=∠AON,且AOBO,∠NAO=∠GBO

∴△NAO≌△GBOASA

ANGBGOON

MOMO,∠MON=∠GOM45°,GONO

∴△MON≌△MOGSAS

MNMG

MGMB+BG

MNAN+BM

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:

尺规作图:过圆外一点作圆的切线.

已知:PO外一点.

求作:经过点PO的切线.

小敏的作法如下:

如图,

1)连接OP,作线段OP的垂直平分线MNOP于点C

2)以点C为圆心,CO的长为半径作圆,交OAB两点;

3)作直线PAPB.所以直线PAPB就是所求作的切线.

老师认为小敏的作法正确.

请回答:连接OAOB后,可证∠OAP=∠OBP90°,其依据是_____;由此可证明直线PAPB都是O的切线,其依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠D=60°,点M在线段AD上,DM= ,AM=2,点E从点D出发,沿着D-C-B-A匀速运动,速度为每秒2个单位长度,达到A点后停止运动,设△MDE的面积为y,点E运动的时间为t(s)yt的部分函数关系如图②所示.

(1)如图①中,DC=_____,如图②中,m=_______n=_____.

(2)E点运动过程中,将平行四边形沿ME所在直线折叠,则t为何值时,折叠后顶点D的对应点D′落在平行四边形的一边上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线轴交于点(点在点的左侧),与轴交于点.

(1)求点,点的坐标;

(2)我们规定:对于直线,直线,若,则直线;反过来也成立.请根据这个规定解决下列问题:

①直线与直线是否垂直?并说明理由;

②若点是抛物线的对称轴上一动点,是否存在点与点,点构成以为直角边的直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列网格图中,每个小正方形的边长均为1个单位.在RtABC中,∠C=90°AC=3BC=2

1)试在图中画出将△ABCB为旋转中心,沿顺时针方向旋转90°后的图形△A1BC1

2)若点B的坐标为(-1,-4),点C的坐标为(-3,-4),试在图中画出直角坐标系,并写出点A的坐标;

3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD内一点,点P到点ABD的距离分别为1,2.△ADP沿点A旋转至ABP,连接PP,并延长APBC相交于点Q.

(1)求证:APP是等腰直角三角形;

(2)BPQ的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.

(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,n的值;

(2)在该不透明袋子中同时摸出两个球,求摸出的两个球颜色不同的概率.(要求列表或画树状图)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2

1)求yx之间的函数关系式,并写出自变量x的取值范围;

2)当x为何值时,满足条件的绿化带的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知抛物线的对称轴为,且经过点A21),点是抛物线上的动点,的横坐标为,过点轴,垂足为于点,点关于直线的对称点为,连接,过点AAEx轴,垂足为E.则当 )时,的周长最小.

A.1B.1.5C.2D.2.5

查看答案和解析>>

同步练习册答案