精英家教网 > 初中数学 > 题目详情

【题目】为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为x m,绿化带的面积为y m2

1)求yx之间的函数关系式,并写出自变量x的取值范围;

2)当x为何值时,满足条件的绿化带的面积最大.

【答案】1y=+20x0x≤25);(2)当x=20时,面积最大.

【解析】

试题(1BC=x,则AB=,然后根据面积=×宽列出函数解析式,BC的长度不等大于墙的长度;(2)首先将函数解析式配成顶点式,然后进行求最值.

试题解析:(1)由题意得:

自变量x的取值范围是0x≤25

2∵2025x=20时,y有最大值200平方米

即当x=20时,满足条件的绿化带面积最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程

1)若此方程的一个根为1,求的值;

2)求证:不论取何实数,此方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,ABACOBOC,∠A90°,∠MONα,分别交直线ABAC于点MN

1)如图1,当α90°时,求证:AMCN

2)如图2,当α45°时,问线段BMMNAN之间有何数量关系,并证明;

3)如图3,当α45°时,旋转∠MON,问线段之间BMMNAN有何数量关系?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】表中所列 的7对值是二次函数 图象上的点所对应的坐标,其中

x

y

7

m

14

k

14

m

7

根据表中提供的信息,有以下4 个判断:

;② ;③ 当时,y 的值是 k;④ 其中判断正确的是 ( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,⊙OABC的外接圆,点D上一动点(不与点AC重合),且∠ADB=∠BAC45°.

(1)求证:AC是⊙O的直径;

(2)当点D运动到使ADCD5时,则线段BD的长为 (直接写出结果)

(3)如图2,把DBC沿直线BC翻折得到EBC,连接AE,当点D运动时,探究线段AEBDCD之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点ABC,请在网格中进行下列操作:

1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为   

2)连接ADCD,则⊙D的半径为   ;扇形DAC的圆心角度数为   

3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,ABAC3,∠BAC100°DBC的中点.

小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转80°,点B的对应点是点E,连接BE,得到△BPE.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.

请你帮助小明继续探究,并解答下列问题:

1)当点E在直线AD上时,如图②所示.

①∠BEP   °

②连接CE,直线CE与直线AB的位置关系是   

2)请在图③中画出△BPE,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.

3)当点P在线段AD上运动时,求AE的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8AD=6,点EAB上一点,AE=2,点FAD上,将AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线轴交于两点(的左侧),与轴交于点 与点关于抛物线的对称轴对称.

(1)求抛物线的解析式及点的坐标:

(2)是抛物线对称轴上的一动点,当的周长最小时,求出点的坐标;

(3)轴上,且,请直接写出点的坐标.

查看答案和解析>>

同步练习册答案